Files
workout/utils.py
2022-11-19 16:04:04 +11:00

117 lines
5.0 KiB
Python

from datetime import datetime
import json
def get_workouts(topsets):
# Get all unique workout_ids (No duplicates)
workout_ids = set([t['WorkoutId']
for t in topsets if t['WorkoutId'] is not None])
# Group topsets into workouts
workouts = []
for workout_id in workout_ids:
topsets_in_workout = [
t for t in topsets if t['WorkoutId'] == workout_id]
workouts.append({
'WorkoutId': workout_id,
'StartDate': datetime.strptime(topsets_in_workout[0]['StartDate'], "%Y-%m-%d").strftime("%b %d %Y"),
'TopSets': [{"TopSetId": t['TopSetId'], "ExerciseId": t['ExerciseId'], "ExerciseName": t['ExerciseName'], "Weight": t['Weight'], "Repetitions": t['Repetitions']} for t in topsets_in_workout]
})
return workouts
def get_all_exercises_from_topsets(topsets):
exercise_ids = set([t['ExerciseId']
for t in topsets if t['ExerciseId'] is not None])
exercises = []
for exercise_id in exercise_ids:
exercises.append({
'ExerciseId': exercise_id,
'ExerciseName': next((t['ExerciseName'] for t in topsets if t['ExerciseId'] == exercise_id), 'Unknown')
})
return exercises
def get_rep_maxes_for_person(person_topsets):
person_exercises = get_all_exercises_from_topsets(person_topsets)
rep_maxes_in_exercises = []
for e in person_exercises:
exercise_topsets = [
t for t in person_topsets if t['ExerciseId'] == e['ExerciseId']]
set_reps = set([t['Repetitions'] for t in exercise_topsets])
topsets_for_exercise = []
for rep in set_reps:
reps = [t for t in exercise_topsets if t['Repetitions'] == rep]
max_weight = max([t['Weight'] for t in reps])
max_topset_for_rep = [t for t in reps if t['Weight'] == max_weight]
topsets_for_exercise.append({
'StartDate': datetime.strptime(max_topset_for_rep[0]['StartDate'], "%Y-%m-%d").strftime("%b %d %Y"),
'Repetitions': rep,
'Weight': max_weight,
'Estimated1RM': max_topset_for_rep[0]['Estimated1RM'],
})
# datetime.strptime(x['StartDate'], "%Y-%m-%d")
topsets_for_exercise.sort(
key=lambda x: x['Repetitions'], reverse=True)
rep_maxes_in_exercises.append({
'ExerciseId': e['ExerciseId'],
'ExerciseName': e['ExerciseName'],
'RepMaxes': topsets_for_exercise,
'EstimatedOneRepMaxProgressions': {
'StartDates': json.dumps([t['StartDate'] for t in exercise_topsets]),
'TopSets': json.dumps([f"{t['Repetitions']} x {t['Weight']}kg" for t in exercise_topsets]),
'Estimated1RMs': json.dumps([t['Estimated1RM'] for t in exercise_topsets]),
}
})
return rep_maxes_in_exercises
def get_people_and_exercise_rep_maxes(topsets):
# Get all unique workout_ids (No duplicates)
people_ids = set([t['PersonId'] for t in topsets])
# Group topsets into workouts
people = []
for person_id in people_ids:
workouts_for_person = [
t for t in topsets if t['PersonId'] == person_id]
people.append({
'PersonId': person_id,
'PersonName': workouts_for_person[0]['PersonName'],
'NumberOfWorkouts': len(list(set([t['WorkoutId'] for t in workouts_for_person if t['WorkoutId'] is not None]))),
'Exercises': get_rep_maxes_for_person(workouts_for_person)
})
return {"People": people, "Stats": get_stats_from_topsets(topsets)}
def get_stats_from_topsets(topsets):
workout_count = len(set([t['WorkoutId']
for t in topsets if t['WorkoutId'] is not None]))
people_count = len(set([t['PersonId']
for t in topsets if t['PersonId'] is not None]))
workout_start_dates = [datetime.strptime(
t['StartDate'], '%Y-%m-%d') for t in topsets if t['StartDate'] is not None]
stats = [{"Text": "Total Workouts", "Value": workout_count}]
if people_count > 1:
stats.append({"Text": "People tracked", "Value": people_count})
if workout_count > 0:
first_workout_date = min(workout_start_dates)
last_workout_date = max(workout_start_dates)
training_duration = last_workout_date - first_workout_date
average_workouts_per_week = round(
workout_count / (training_duration.days / 7), 2)
stats.append({"Text": "Days Since First Workout", "Value": (
datetime.now() - first_workout_date).days})
stats.append({"Text": "Days Since Last Workout",
"Value": (
datetime.now() - last_workout_date).days})
stats.append({"Text": "Average Workouts Per Week",
"Value": average_workouts_per_week})
return stats