Speed up sql plot generation
This commit is contained in:
39
utils.py
39
utils.py
@@ -106,38 +106,33 @@ def get_distinct_colors(n):
|
||||
colors.append(hex_color)
|
||||
return colors
|
||||
|
||||
def generate_plot(df, title):
|
||||
def generate_plot(df: pd.DataFrame, title: str) -> str:
|
||||
"""
|
||||
Analyzes the DataFrame and generates an appropriate Plotly visualization.
|
||||
Returns the Plotly figure as a div string.
|
||||
Optimized for speed.
|
||||
"""
|
||||
if df.empty:
|
||||
return "<p>No data available to plot.</p>"
|
||||
|
||||
num_columns = len(df.columns)
|
||||
|
||||
# Simple logic to decide plot type based on DataFrame structure
|
||||
if num_columns == 1:
|
||||
# Single column: perhaps a histogram or bar chart
|
||||
column = df.columns[0]
|
||||
if pd.api.types.is_numeric_dtype(df[column]):
|
||||
fig = px.histogram(df, x=column, title=title)
|
||||
else:
|
||||
fig = px.bar(df, x=column, title=title)
|
||||
elif num_columns == 2:
|
||||
# Two columns: scatter plot or line chart
|
||||
col1, col2 = df.columns
|
||||
if pd.api.types.is_numeric_dtype(df[col1]) and pd.api.types.is_numeric_dtype(df[col2]):
|
||||
fig = px.scatter(df, x=col1, y=col2, title=title)
|
||||
else:
|
||||
fig = px.bar(df, x=col1, y=col2, title=title)
|
||||
else:
|
||||
# More than two columns: heatmap or other complex plots
|
||||
fig = px.imshow(df.corr(), text_auto=True, title=title)
|
||||
# Dictionary-based lookup for faster decision-making
|
||||
plot_funcs = {
|
||||
1: lambda: px.histogram(df, x=df.columns[0], title=title)
|
||||
if pd.api.types.is_numeric_dtype(df.iloc[:, 0]) else px.bar(df, x=df.columns[0], title=title),
|
||||
|
||||
2: lambda: px.scatter(df, x=df.columns[0], y=df.columns[1], title=title)
|
||||
if pd.api.types.is_numeric_dtype(df.iloc[:, 0]) and pd.api.types.is_numeric_dtype(df.iloc[:, 1])
|
||||
else px.bar(df, x=df.columns[0], y=df.columns[1], title=title)
|
||||
}
|
||||
|
||||
# Select plot function based on column count
|
||||
fig = plot_funcs.get(num_columns, lambda: px.imshow(df.corr(numeric_only=True), text_auto=True, title=title))()
|
||||
|
||||
# Use static rendering for speed
|
||||
return pio.to_html(fig, full_html=False, include_plotlyjs='cdn', config={'staticPlot': True})
|
||||
|
||||
# Convert Plotly figure to HTML div
|
||||
plot_div = pio.to_html(fig, full_html=False)
|
||||
return plot_div
|
||||
|
||||
def calculate_estimated_1rm(weight, repetitions):
|
||||
# Ensure the inputs are numeric
|
||||
|
||||
Reference in New Issue
Block a user