Add person graphs endpoint for workouts per week & PRs per week, consumed via dashboard, person overview and notes

This commit is contained in:
Peter Stockings
2025-01-27 01:00:50 +11:00
parent 049af675cc
commit 0ed0c20e93
9 changed files with 224 additions and 152 deletions

23
app.py
View File

@@ -2,12 +2,11 @@ from datetime import datetime, date, timedelta
from dateutil.relativedelta import relativedelta
import os
from flask import Flask, abort, render_template, redirect, request, url_for
from jinja2 import Environment, FileSystemLoader, select_autoescape
import jinja_partials
from jinja2_fragments import render_block
from decorators import validate_person, validate_topset, validate_workout
from db import DataBase
from utils import count_prs_over_time, get_people_and_exercise_rep_maxes, convert_str_to_date, get_earliest_and_latest_workout_date, filter_workout_topsets, first_and_last_visible_days_in_month, get_weekly_pr_graph_model, get_workout_counts, generate_plot
from utils import get_people_and_exercise_rep_maxes, convert_str_to_date, get_earliest_and_latest_workout_date, filter_workout_topsets, first_and_last_visible_days_in_month, generate_plot
from flask_htmx import HTMX
import minify_html
from urllib.parse import quote
@@ -66,13 +65,9 @@ def dashboard():
people_and_exercise_rep_maxes = get_people_and_exercise_rep_maxes(
all_topsets, selected_person_ids, selected_exercise_ids, min_date, max_date)
weekly_counts = get_workout_counts(all_topsets, 'week')
weekly_pr_counts = count_prs_over_time(all_topsets, 'week')
dashboard_graphs = [get_weekly_pr_graph_model('Workouts per week', weekly_counts), get_weekly_pr_graph_model('PRs per week', weekly_pr_counts)]
if htmx:
return render_block(app.jinja_env, 'dashboard.html', 'content', model=people_and_exercise_rep_maxes, people=people, exercises=exercises, min_date=min_date, max_date=max_date, selected_person_ids=selected_person_ids, selected_exercise_ids=selected_exercise_ids, tags=tags, dashboard_graphs=dashboard_graphs)
return render_template('dashboard.html', model=people_and_exercise_rep_maxes, people=people, exercises=exercises, min_date=min_date, max_date=max_date, selected_person_ids=selected_person_ids, selected_exercise_ids=selected_exercise_ids, tags=tags, dashboard_graphs=dashboard_graphs)
return render_block(app.jinja_env, 'dashboard.html', 'content', model=people_and_exercise_rep_maxes, people=people, exercises=exercises, min_date=min_date, max_date=max_date, selected_person_ids=selected_person_ids, selected_exercise_ids=selected_exercise_ids, tags=tags)
return render_template('dashboard.html', model=people_and_exercise_rep_maxes, people=people, exercises=exercises, min_date=min_date, max_date=max_date, selected_person_ids=selected_person_ids, selected_exercise_ids=selected_exercise_ids, tags=tags)
@ app.route("/person/list", methods=['GET'])
@@ -457,6 +452,18 @@ def get_stats():
stats = db.stats.fetch_stats(selected_people_ids, min_date, max_date, selected_exercise_ids)
return render_template('partials/stats.html', stats=stats, refresh_url=request.full_path)
@app.route("/graphs", methods=['GET'])
def get_people_graphs():
selected_people_ids = request.args.getlist('person_id', type=int)
min_date = request.args.get('min_date', type=convert_str_to_date)
max_date = request.args.get('max_date', type=convert_str_to_date)
selected_exercise_ids = request.args.getlist('exercise_id', type=int)
graphs = db.people_graphs.get(selected_people_ids, min_date, max_date, selected_exercise_ids)
return render_template('partials/people_graphs.html', graphs=graphs, refresh_url=request.full_path)
@ app.route("/person/<int:person_id>/workout/<int:workout_id>", methods=['GET'])
def show_workout(person_id, workout_id):
view_model = db.workout.get(person_id, workout_id)

12
db.py
View File

@@ -1,6 +1,5 @@
import os
import psycopg2
import numpy as np
from psycopg2.extras import RealDictCursor
from datetime import datetime
from dateutil.relativedelta import relativedelta
@@ -9,11 +8,12 @@ from flask import g
import pandas as pd
from features.calendar import Calendar
from features.exercises import Exercises
from features.people_graphs import PeopleGraphs
from features.person_overview import PersonOverview
from features.stats import Stats
from features.workout import Workout
from features.sql_explorer import SQLExplorer
from utils import count_prs_over_time, get_all_exercises_from_topsets, get_exercise_graph_model, get_topsets_for_person, get_weekly_pr_graph_model, get_workout_counts, get_workouts
from utils import get_all_exercises_from_topsets, get_exercise_graph_model, get_topsets_for_person, get_workouts
class DataBase():
@@ -24,6 +24,7 @@ class DataBase():
self.exercises = Exercises(self.execute)
self.sql_explorer = SQLExplorer(self.execute)
self.person_overview = PersonOverview(self.execute)
self.people_graphs = PeopleGraphs(self.execute)
db_url = urlparse(os.environ['DATABASE_URL'])
# if db_url is null then throw error
if not db_url:
@@ -207,17 +208,12 @@ class DataBase():
LEFT JOIN Exercise E ON T.exercise_id=E.exercise_id
WHERE P.person_id=%s""", [person_id])
weekly_counts = get_workout_counts(topsets, 'week')
weekly_pr_counts = count_prs_over_time(topsets, 'week')
person_graphs = [get_weekly_pr_graph_model('Workouts per week', weekly_counts), get_weekly_pr_graph_model('PRs per week', weekly_pr_counts)]
return {
'PersonId': next((t['PersonId'] for t in topsets), -1),
'PersonName': next((t['PersonName'] for t in topsets), 'Unknown'),
'Exercises': get_all_exercises_from_topsets(topsets),
'Workouts': get_workouts(topsets),
'ExerciseProgressGraphs': get_topsets_for_person(topsets),
'PersonGraphs': person_graphs
'ExerciseProgressGraphs': get_topsets_for_person(topsets)
}
def get_workout(self, person_id, workout_id):

184
features/people_graphs.py Normal file
View File

@@ -0,0 +1,184 @@
import pandas as pd
from utils import get_distinct_colors
class PeopleGraphs:
def __init__(self, db_connection_method):
self.execute = db_connection_method
def get(self, selected_people_ids=None, min_date=None, max_date=None, selected_exercise_ids=None):
# Base query
query = """
SELECT
P.person_id AS "PersonId",
P.name AS "PersonName",
W.workout_id AS "WorkoutId",
W.start_date AS "StartDate",
T.topset_id AS "TopSetId",
E.exercise_id AS "ExerciseId",
E.name AS "ExerciseName",
T.repetitions AS "Repetitions",
T.weight AS "Weight",
round((100 * T.Weight::numeric::integer)/(101.3-2.67123 * T.Repetitions),0)::numeric::integer AS "Estimated1RM"
FROM Person P
LEFT JOIN Workout W ON P.person_id = W.person_id
LEFT JOIN TopSet T ON W.workout_id = T.workout_id
LEFT JOIN Exercise E ON T.exercise_id = E.exercise_id
WHERE TRUE
"""
# Parameters for the query
params = []
# Add optional filters
if selected_people_ids:
placeholders = ", ".join(["%s"] * len(selected_people_ids))
query += f" AND P.person_id IN ({placeholders})"
params.extend(selected_people_ids)
if min_date:
query += " AND W.start_date >= %s"
params.append(min_date)
if max_date:
query += " AND W.start_date <= %s"
params.append(max_date)
if selected_exercise_ids:
placeholders = ", ".join(["%s"] * len(selected_exercise_ids))
query += f" AND E.exercise_id IN ({placeholders})"
params.extend(selected_exercise_ids)
# Execute the query
topsets = self.execute(query, params)
# Generate graphs
weekly_counts = self.get_workout_counts(topsets, 'week')
weekly_pr_counts = self.count_prs_over_time(topsets, 'week')
graphs = [self.get_weekly_pr_graph_model('Workouts per week', weekly_counts), self.get_weekly_pr_graph_model('PRs per week', weekly_pr_counts)]
return graphs
def get_weekly_pr_graph_model(self, title, weekly_pr_data):
# Assuming weekly_pr_data is in the format {1: {"PersonName": "Alice", "PRCounts": {Timestamp('2022-01-01', freq='W-MON'): 0, ...}}, 2: {...}, ...}
# Find the overall date range for all users
all_dates = [date for user_data in weekly_pr_data.values() for date in user_data["PRCounts"].keys()]
min_date, max_date = min(all_dates), max(all_dates)
total_span = (max_date - min_date).days or 1
relative_positions = [(date - min_date).days / total_span for date in all_dates]
# Calculate viewBox dimensions
max_value = max(max(user_data["PRCounts"].values()) for user_data in weekly_pr_data.values()) or 1
min_value = 0
value_range = max_value - min_value
vb_width = 200
vb_height= 75
plots = []
colors = get_distinct_colors(len(weekly_pr_data.items()))
for count, (user_id, user_data) in enumerate(weekly_pr_data.items()):
pr_counts = user_data["PRCounts"]
person_name = user_data["PersonName"]
values = pr_counts.values()
values_scaled = [((value - min_value) / value_range) * vb_height for value in values]
plot_points = list(zip(values_scaled, relative_positions))
messages = [f'{value} for {person_name} at {date.strftime("%d %b %y")}' for value, date in zip(values, pr_counts.keys())]
plot_labels = zip(values_scaled, relative_positions, messages)
# Create a plot for each user
plot = {
'label': person_name, # Use PersonName instead of User ID
'color': colors[count],
'points': plot_points,
'plot_labels': plot_labels
}
plots.append(plot)
# Return workout data with SVG dimensions and data points
return {
'title': title,
'vb_width': vb_width,
'vb_height': vb_height,
'plots': plots
}
def get_workout_counts(self, workouts, period='week'):
df = pd.DataFrame(workouts)
# Convert 'StartDate' to datetime and set period
df['StartDate'] = pd.to_datetime(df['StartDate'])
df['Period'] = df['StartDate'].dt.to_period('W' if period == 'week' else 'M')
# Group by PersonId, Period and count unique workouts
workout_counts = df.groupby(['PersonId', 'Period'])['WorkoutId'].nunique().reset_index()
# Convert 'Period' to timestamp using the start date of the period
workout_counts['Period'] = workout_counts['Period'].apply(lambda x: x.start_time)
# Pivot the result to get periods as columns
workout_counts_pivot = workout_counts.pivot(index='PersonId', columns='Period', values='WorkoutId').fillna(0)
# Include person names
names = df[['PersonId', 'PersonName']].drop_duplicates().set_index('PersonId')
workout_counts_final = names.join(workout_counts_pivot, how='left').fillna(0)
# Convert DataFrame to dictionary
result = workout_counts_final.reset_index().to_dict('records')
# Reformat the dictionary to desired structure
formatted_result = {}
for record in result:
person_id = record.pop('PersonId')
person_name = record.pop('PersonName')
pr_counts = {k: v for k, v in record.items()}
formatted_result[person_id] = {'PersonName': person_name, 'PRCounts': pr_counts}
return formatted_result
def count_prs_over_time(self, workouts, period='week'):
df = pd.DataFrame(workouts)
# Convert 'StartDate' to datetime
df['StartDate'] = pd.to_datetime(df['StartDate'])
# Set period as week or month
df['Period'] = df['StartDate'].dt.to_period('W' if period == 'week' else 'M')
# Group by Person, Exercise, and Period to find max Estimated1RM in each period
period_max = df.groupby(['PersonId', 'ExerciseId', 'Period'])['Estimated1RM'].max().reset_index()
# Determine all-time max Estimated1RM up to the start of each period
period_max['AllTimeMax'] = period_max.groupby(['PersonId', 'ExerciseId'])['Estimated1RM'].cummax().shift(1)
# Identify PRs as entries where the period's max Estimated1RM exceeds the all-time max
period_max['IsPR'] = period_max['Estimated1RM'] > period_max['AllTimeMax']
# Count PRs in each period for each person
pr_counts = period_max.groupby(['PersonId', 'Period'])['IsPR'].sum().reset_index()
# Convert 'Period' to timestamp using the start date of the period
pr_counts['Period'] = pr_counts['Period'].apply(lambda x: x.start_time)
# Pivot table to get the desired output format
output = pr_counts.pivot(index='PersonId', columns='Period', values='IsPR').fillna(0)
# Convert only the PR count columns to integers
for col in output.columns:
output[col] = output[col].astype(int)
# Merge with names and convert to desired format
names = df[['PersonId', 'PersonName']].drop_duplicates().set_index('PersonId')
output = names.join(output, how='left').fillna(0)
# Reset the index to bring 'PersonId' back as a column
output.reset_index(inplace=True)
# Convert to the final dictionary format with PRCounts nested
result = {}
for index, row in output.iterrows():
person_id = row['PersonId']
person_name = row['PersonName']
pr_counts = row.drop(['PersonId', 'PersonName']).to_dict()
result[person_id] = {"PersonName": person_name, "PRCounts": pr_counts}
return result

View File

@@ -2,12 +2,9 @@
{% block content %}
<div class="w-full mb-4 grid grid-cols-1 xl:grid-cols-2 gap-4">
{% for graph in dashboard_graphs %}
<div class="bg-white shadow rounded-lg p-4 sm:p-6 xl:p-8">
{{ render_partial('partials/svg_line_graph.html', **graph) }}
</div>
{% endfor %}
<div class="hidden" hx-get="{{ url_for('get_people_graphs') }}"
hx-include="[name='exercise_id'],[name='min_date'],[name='max_date'],[name='person_id']" hx-trigger="load"
hx-target="this" hx-swap="outerHTML">
</div>
<div class="bg-white shadow rounded-lg pt-4 p-3 md:p-4 w-full mb-4">

View File

@@ -3,6 +3,10 @@
{% block content %}
<div class="flex flex-grow flex-col bg-white sm:rounded shadow overflow-hidden">
<div class="hidden" hx-get="{{ url_for('get_people_graphs') }}" hx-vals='{"person_id": "{{ person_id }}"}'
hx-trigger="load" hx-target="this" hx-swap="outerHTML">
</div>
<div class="flex items-center justify-between pt-2 pb-2">
<div class="flex">
<h2 class="ml-2 text-xl font-bold leading-none">Notes</h2>

View File

@@ -0,0 +1,8 @@
<div class="w-full mb-4 grid grid-cols-1 xl:grid-cols-2 gap-4" hx-get="{{ refresh_url }}" hx-target="this"
hx-swap="outerHTML" hx-trigger="refreshStats from:body">
{% for graph in graphs %}
<div class="bg-white shadow rounded-lg p-4 sm:p-6 xl:p-8">
{{ render_partial('partials/svg_line_graph.html', **graph) }}
</div>
{% endfor %}
</div>

View File

@@ -65,7 +65,7 @@
{% endfor %}
</svg>
{% if plots|length > 1 %}
<div class="flex justify-center pt-2">
{% for plot in plots %}
<div class="flex items-center px-2 select-none cursor-pointer"
@@ -76,6 +76,5 @@
</div>
{% endfor %}
</div>
{% endif %}
</div>

View File

@@ -5,6 +5,11 @@
<div class="flex max-w-full overflow-x-hidden">
<div class="bg-white shadow rounded-lg pt-2 pb-2 sm:w-full xl:p-8 md:w-full">
<div class="hidden" hx-get="{{ url_for('get_people_graphs') }}"
hx-include="[name='exercise_id'],[name='min_date'],[name='max_date']"
hx-vals='{"person_id": "{{ person_id }}"}' hx-trigger="load" hx-target="this" hx-swap="outerHTML">
</div>
<div class="mb-4 flex items-center justify-between px-2 md:px-3">
<div>
<h3 class="text-xl font-bold text-gray-900 mb-2">{{ person_name }}</h3>

128
utils.py
View File

@@ -260,134 +260,6 @@ def get_exercise_graph_model(title, estimated_1rm, repetitions, weight, start_da
'max_date': max_date
}
def get_workout_counts(workouts, period='week'):
df = pd.DataFrame(workouts)
# Convert 'StartDate' to datetime and set period
df['StartDate'] = pd.to_datetime(df['StartDate'])
df['Period'] = df['StartDate'].dt.to_period('W' if period == 'week' else 'M')
# Group by PersonId, Period and count unique workouts
workout_counts = df.groupby(['PersonId', 'Period'])['WorkoutId'].nunique().reset_index()
# Convert 'Period' to timestamp using the start date of the period
workout_counts['Period'] = workout_counts['Period'].apply(lambda x: x.start_time)
# Pivot the result to get periods as columns
workout_counts_pivot = workout_counts.pivot(index='PersonId', columns='Period', values='WorkoutId').fillna(0)
# Include person names
names = df[['PersonId', 'PersonName']].drop_duplicates().set_index('PersonId')
workout_counts_final = names.join(workout_counts_pivot, how='left').fillna(0)
# Convert DataFrame to dictionary
result = workout_counts_final.reset_index().to_dict('records')
# Reformat the dictionary to desired structure
formatted_result = {}
for record in result:
person_id = record.pop('PersonId')
person_name = record.pop('PersonName')
pr_counts = {k: v for k, v in record.items()}
formatted_result[person_id] = {'PersonName': person_name, 'PRCounts': pr_counts}
return formatted_result
def count_prs_over_time(workouts, period='week'):
df = pd.DataFrame(workouts)
# Convert 'StartDate' to datetime
df['StartDate'] = pd.to_datetime(df['StartDate'])
# Set period as week or month
df['Period'] = df['StartDate'].dt.to_period('W' if period == 'week' else 'M')
# Group by Person, Exercise, and Period to find max Estimated1RM in each period
period_max = df.groupby(['PersonId', 'ExerciseId', 'Period'])['Estimated1RM'].max().reset_index()
# Determine all-time max Estimated1RM up to the start of each period
period_max['AllTimeMax'] = period_max.groupby(['PersonId', 'ExerciseId'])['Estimated1RM'].cummax().shift(1)
# Identify PRs as entries where the period's max Estimated1RM exceeds the all-time max
period_max['IsPR'] = period_max['Estimated1RM'] > period_max['AllTimeMax']
# Count PRs in each period for each person
pr_counts = period_max.groupby(['PersonId', 'Period'])['IsPR'].sum().reset_index()
# Convert 'Period' to timestamp using the start date of the period
pr_counts['Period'] = pr_counts['Period'].apply(lambda x: x.start_time)
# Pivot table to get the desired output format
output = pr_counts.pivot(index='PersonId', columns='Period', values='IsPR').fillna(0)
# Convert only the PR count columns to integers
for col in output.columns:
output[col] = output[col].astype(int)
# Merge with names and convert to desired format
names = df[['PersonId', 'PersonName']].drop_duplicates().set_index('PersonId')
output = names.join(output, how='left').fillna(0)
# Reset the index to bring 'PersonId' back as a column
output.reset_index(inplace=True)
# Convert to the final dictionary format with PRCounts nested
result = {}
for index, row in output.iterrows():
person_id = row['PersonId']
person_name = row['PersonName']
pr_counts = row.drop(['PersonId', 'PersonName']).to_dict()
result[person_id] = {"PersonName": person_name, "PRCounts": pr_counts}
return result
def get_weekly_pr_graph_model(title, weekly_pr_data):
# Assuming weekly_pr_data is in the format {1: {"PersonName": "Alice", "PRCounts": {Timestamp('2022-01-01', freq='W-MON'): 0, ...}}, 2: {...}, ...}
# Find the overall date range for all users
all_dates = [date for user_data in weekly_pr_data.values() for date in user_data["PRCounts"].keys()]
min_date, max_date = min(all_dates), max(all_dates)
total_span = (max_date - min_date).days or 1
relative_positions = [(date - min_date).days / total_span for date in all_dates]
# Calculate viewBox dimensions
max_value = max(max(user_data["PRCounts"].values()) for user_data in weekly_pr_data.values()) or 1
min_value = 0
value_range = max_value - min_value
vb_width = 200
vb_height= 75
plots = []
colors = get_distinct_colors(len(weekly_pr_data.items()))
for count, (user_id, user_data) in enumerate(weekly_pr_data.items()):
pr_counts = user_data["PRCounts"]
person_name = user_data["PersonName"]
values = pr_counts.values()
values_scaled = [((value - min_value) / value_range) * vb_height for value in values]
plot_points = list(zip(values_scaled, relative_positions))
messages = [f'{value} for {person_name} at {date.strftime("%d %b %y")}' for value, date in zip(values, pr_counts.keys())]
plot_labels = zip(values_scaled, relative_positions, messages)
# Create a plot for each user
plot = {
'label': person_name, # Use PersonName instead of User ID
'color': colors[count],
'points': plot_points,
'plot_labels': plot_labels
}
plots.append(plot)
# Return workout data with SVG dimensions and data points
return {
'title': title,
'vb_width': vb_width,
'vb_height': vb_height,
'plots': plots
}
def get_distinct_colors(n):
colors = []
for i in range(n):