210 lines
6.0 KiB
JavaScript
210 lines
6.0 KiB
JavaScript
import { applyRampFilter } from "./fbp.js";
|
|
|
|
export async function generateSinogram(
|
|
imageUrl,
|
|
angles = 180,
|
|
drawAngleCallback = null
|
|
) {
|
|
const image = await loadImage(imageUrl);
|
|
const size = Math.max(image.width, image.height);
|
|
const projections = [];
|
|
|
|
const canvas = Object.assign(document.createElement("canvas"), {
|
|
width: size,
|
|
height: size,
|
|
});
|
|
const ctx = canvas.getContext("2d");
|
|
|
|
for (let angle = 0; angle < angles; angle++) {
|
|
const theta = (angle * Math.PI) / angles;
|
|
|
|
// 🔁 Call visual overlay for this angle
|
|
if (drawAngleCallback) drawAngleCallback(theta);
|
|
|
|
// (Optional: add delay for animation)
|
|
await new Promise((r) => setTimeout(r, 0.01));
|
|
|
|
// Clear canvas
|
|
ctx.clearRect(0, 0, size, size);
|
|
|
|
// Transform and draw rotated image
|
|
ctx.save();
|
|
ctx.translate(size / 2, size / 2);
|
|
ctx.rotate(theta);
|
|
ctx.drawImage(image, -image.width / 2, -image.height / 2);
|
|
ctx.restore();
|
|
|
|
// Read pixel data
|
|
const { data } = ctx.getImageData(0, 0, size, size);
|
|
|
|
// Sum brightness vertically (simulate X-ray projection)
|
|
const projection = [];
|
|
for (let x = 0; x < size; x++) {
|
|
let sum = 0;
|
|
for (let y = 0; y < size; y++) {
|
|
const i = (y * size + x) * 4;
|
|
const gray = data[i]; // red channel (since grayscale)
|
|
sum += gray;
|
|
}
|
|
projection.push(sum / size); // normalize
|
|
}
|
|
projections.push(projection);
|
|
}
|
|
|
|
// Create sinogram canvas
|
|
const sinogramCanvas = Object.assign(document.createElement("canvas"), {
|
|
width: size,
|
|
height: angles,
|
|
});
|
|
const sinCtx = sinogramCanvas.getContext("2d");
|
|
const imgData = sinCtx.createImageData(size, angles);
|
|
|
|
for (let y = 0; y < angles; y++) {
|
|
for (let x = 0; x < size; x++) {
|
|
const val = projections[y][x];
|
|
const i = (y * size + x) * 4;
|
|
imgData.data[i + 0] = val;
|
|
imgData.data[i + 1] = val;
|
|
imgData.data[i + 2] = val;
|
|
imgData.data[i + 3] = 255;
|
|
}
|
|
}
|
|
|
|
sinCtx.putImageData(imgData, 0, 0);
|
|
return sinogramCanvas.toDataURL();
|
|
}
|
|
|
|
export async function reconstructImageFromSinogram(
|
|
sinogramUrl,
|
|
size = 256,
|
|
onFrame = null,
|
|
renderMode = "heatmap",
|
|
useFBP = true
|
|
) {
|
|
const sinogramImage = await loadImage(sinogramUrl);
|
|
const canvas = Object.assign(document.createElement("canvas"), {
|
|
width: sinogramImage.width,
|
|
height: sinogramImage.height,
|
|
});
|
|
const ctx = canvas.getContext("2d");
|
|
ctx.drawImage(sinogramImage, 0, 0);
|
|
const sinogramData = ctx.getImageData(
|
|
0,
|
|
0,
|
|
sinogramImage.width,
|
|
sinogramImage.height
|
|
).data;
|
|
|
|
size = sinogramImage.width; // match size to sinogram resolution
|
|
const outputCanvas = Object.assign(document.createElement("canvas"), {
|
|
width: size,
|
|
height: size,
|
|
});
|
|
const outputCtx = outputCanvas.getContext("2d");
|
|
const accum = new Float32Array(size * size);
|
|
const center = size / 2;
|
|
|
|
const angles = sinogramImage.height;
|
|
const width = sinogramImage.width;
|
|
|
|
for (let angle = 0; angle < angles; angle++) {
|
|
const theta = (angle * Math.PI) / angles;
|
|
|
|
let projection = [];
|
|
for (let x = 0; x < width; x++) {
|
|
const i = (angle * width + x) * 4;
|
|
projection.push(sinogramData[i]);
|
|
}
|
|
if (useFBP) {
|
|
projection = applyRampFilter(projection);
|
|
}
|
|
|
|
for (let y = 0; y < size; y++) {
|
|
for (let x = 0; x < size; x++) {
|
|
const x0 = x - center;
|
|
const y0 = center - y; // flip y
|
|
const s = Math.round(
|
|
x0 * Math.cos(theta) + y0 * Math.sin(theta) + width / 2
|
|
);
|
|
if (s >= 0 && s < width) {
|
|
accum[y * size + x] += projection[s];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (onFrame) {
|
|
// normalize and draw current frame
|
|
let maxVal = 0;
|
|
for (let i = 0; i < accum.length; i++) {
|
|
if (accum[i] > maxVal) maxVal = accum[i];
|
|
}
|
|
const imageData = outputCtx.createImageData(size, size);
|
|
for (let i = 0; i < accum.length; i++) {
|
|
let val = accum[i] / maxVal;
|
|
val = Math.min(1, Math.max(0, val));
|
|
let r, g, b;
|
|
if (renderMode === "grayscale") {
|
|
const gray = Math.round(val * 255);
|
|
r = g = b = gray;
|
|
} else {
|
|
[r, g, b] = getHeatmapColor(val);
|
|
}
|
|
imageData.data[i * 4 + 0] = r;
|
|
imageData.data[i * 4 + 1] = g;
|
|
imageData.data[i * 4 + 2] = b;
|
|
imageData.data[i * 4 + 3] = 255;
|
|
}
|
|
outputCtx.putImageData(imageData, 0, 0);
|
|
await new Promise((r) => setTimeout(r, 1));
|
|
onFrame(angle, outputCanvas.toDataURL());
|
|
}
|
|
}
|
|
|
|
return outputCanvas.toDataURL();
|
|
}
|
|
|
|
// Heatmap mapping: blue → green → yellow → red
|
|
function getHeatmapColor(value) {
|
|
const r = Math.min(255, Math.max(0, 255 * Math.min(1, 4 * (value - 0.75))));
|
|
const g = Math.min(255, Math.max(0, 255 * (4 * Math.abs(value - 0.5) - 1)));
|
|
const b = Math.min(255, Math.max(0, 255 * (1 - 4 * value)));
|
|
return [r, g, b];
|
|
}
|
|
|
|
function loadImage(src) {
|
|
return new Promise((resolve) => {
|
|
const img = new Image();
|
|
img.crossOrigin = "anonymous";
|
|
img.onload = () => resolve(img);
|
|
img.src = src;
|
|
});
|
|
}
|
|
|
|
export async function convertToGrayscale(imageUrl) {
|
|
const image = await loadImage(imageUrl);
|
|
const canvas = Object.assign(document.createElement("canvas"), {
|
|
width: image.width,
|
|
height: image.height,
|
|
});
|
|
const ctx = canvas.getContext("2d");
|
|
|
|
// Draw original image
|
|
ctx.drawImage(image, 0, 0);
|
|
|
|
// Get pixel data
|
|
const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
|
|
const data = imageData.data;
|
|
|
|
// Convert to grayscale: set R, G, B to luminance
|
|
for (let i = 0; i < data.length; i += 4) {
|
|
const r = data[i];
|
|
const g = data[i + 1];
|
|
const b = data[i + 2];
|
|
const luminance = 0.299 * r + 0.587 * g + 0.114 * b;
|
|
data[i] = data[i + 1] = data[i + 2] = luminance;
|
|
}
|
|
|
|
ctx.putImageData(imageData, 0, 0);
|
|
return canvas.toDataURL();
|
|
}
|