142 lines
5.5 KiB
Python
142 lines
5.5 KiB
Python
import colorsys
|
|
from datetime import datetime, date, timedelta
|
|
import numpy as np
|
|
import pandas as pd
|
|
import plotly.express as px
|
|
import plotly.io as pio
|
|
|
|
def convert_str_to_date(date_str, format='%Y-%m-%d'):
|
|
try:
|
|
return datetime.strptime(date_str, format).date()
|
|
except ValueError:
|
|
return None
|
|
except TypeError:
|
|
return None
|
|
|
|
def get_exercise_graph_model(title, estimated_1rm, repetitions, weight, start_dates, messages, epoch, person_id, exercise_id, min_date=None, max_date=None):
|
|
# Precompute ranges
|
|
min_date, max_date = min(start_dates), max(start_dates)
|
|
total_span = (max_date - min_date).days or 1
|
|
|
|
min_e1rm, max_e1rm = min(estimated_1rm), max(estimated_1rm)
|
|
min_reps, max_reps = min(repetitions), max(repetitions)
|
|
min_weight, max_weight = min(weight), max(weight)
|
|
|
|
e1rm_range = max_e1rm - min_e1rm or 1
|
|
reps_range = max_reps - min_reps or 1
|
|
weight_range = max_weight - min_weight or 1
|
|
|
|
# Calculate viewBox dimensions
|
|
vb_width, vb_height = total_span, e1rm_range
|
|
vb_width *= 200 / vb_width # Scale to 200px width
|
|
vb_height *= 75 / vb_height # Scale to 75px height
|
|
|
|
# Use NumPy arrays for efficient scaling
|
|
relative_positions = np.array([(date - min_date).days / total_span for date in start_dates])
|
|
estimated_1rm_scaled = ((np.array(estimated_1rm) - min_e1rm) / e1rm_range) * vb_height
|
|
repetitions_scaled = ((np.array(repetitions) - min_reps) / reps_range) * vb_height
|
|
weight_scaled = ((np.array(weight) - min_weight) / weight_range) * vb_height
|
|
|
|
# Calculate slope and line of best fit
|
|
slope_kg_per_day = e1rm_range / total_span
|
|
best_fit_formula = {
|
|
'kg_per_week': round(slope_kg_per_day * 7, 1),
|
|
'kg_per_month': round(slope_kg_per_day * 30, 1)
|
|
}
|
|
|
|
best_fit_points = []
|
|
try:
|
|
if len(relative_positions) > 1: # Ensure there are enough points for polyfit
|
|
# Calculate line of best fit using NumPy
|
|
m, b = np.polyfit(relative_positions, estimated_1rm_scaled, 1)
|
|
y_best_fit = m * relative_positions + b
|
|
best_fit_points = list(zip(y_best_fit.tolist(), relative_positions.tolist()))
|
|
else:
|
|
raise ValueError("Not enough data points for polyfit")
|
|
except (np.linalg.LinAlgError, ValueError) as e:
|
|
# Handle cases where polyfit fails
|
|
best_fit_points = []
|
|
m, b = 0, 0
|
|
|
|
# Prepare data for plots
|
|
repetitions_data = {
|
|
'label': 'Reps',
|
|
'color': '#388fed',
|
|
'points': list(zip(repetitions_scaled.tolist(), relative_positions.tolist()))
|
|
}
|
|
weight_data = {
|
|
'label': 'Weight',
|
|
'color': '#bd3178',
|
|
'points': list(zip(weight_scaled.tolist(), relative_positions.tolist()))
|
|
}
|
|
estimated_1rm_data = {
|
|
'label': 'E1RM',
|
|
'color': '#2ca02c',
|
|
'points': list(zip(estimated_1rm_scaled.tolist(), relative_positions.tolist()))
|
|
}
|
|
|
|
# Prepare plot labels
|
|
plot_labels = list(zip(relative_positions.tolist(), messages))
|
|
|
|
# Return exercise data with SVG dimensions and data points
|
|
return {
|
|
'title': title,
|
|
'vb_width': vb_width,
|
|
'vb_height': vb_height,
|
|
'plots': [repetitions_data, weight_data, estimated_1rm_data],
|
|
'best_fit_points': best_fit_points,
|
|
'best_fit_formula': best_fit_formula,
|
|
'plot_labels': plot_labels,
|
|
'epochs': ['Custom', '1M', '3M', '6M', 'All'],
|
|
'selected_epoch': epoch,
|
|
'person_id': person_id,
|
|
'exercise_id': exercise_id,
|
|
'min_date': min_date,
|
|
'max_date': max_date
|
|
}
|
|
|
|
def get_distinct_colors(n):
|
|
colors = []
|
|
for i in range(n):
|
|
# Divide the color wheel into n parts
|
|
hue = i / n
|
|
# Convert HSL (Hue, Saturation, Lightness) to RGB and then to a Hex string
|
|
rgb = colorsys.hls_to_rgb(hue, 0.6, 0.4) # Fixed lightness and saturation
|
|
hex_color = '#{:02x}{:02x}{:02x}'.format(int(rgb[0]*255), int(rgb[1]*255), int(rgb[2]*255))
|
|
colors.append(hex_color)
|
|
return colors
|
|
|
|
def generate_plot(df: pd.DataFrame, title: str) -> str:
|
|
"""
|
|
Analyzes the DataFrame and generates an appropriate Plotly visualization.
|
|
Returns the Plotly figure as a div string.
|
|
Optimized for speed.
|
|
"""
|
|
if df.empty:
|
|
return "<p>No data available to plot.</p>"
|
|
|
|
num_columns = len(df.columns)
|
|
|
|
# Dictionary-based lookup for faster decision-making
|
|
plot_funcs = {
|
|
1: lambda: px.histogram(df, x=df.columns[0], title=title)
|
|
if pd.api.types.is_numeric_dtype(df.iloc[:, 0]) else px.bar(df, x=df.columns[0], title=title),
|
|
|
|
2: lambda: px.scatter(df, x=df.columns[0], y=df.columns[1], title=title)
|
|
if pd.api.types.is_numeric_dtype(df.iloc[:, 0]) and pd.api.types.is_numeric_dtype(df.iloc[:, 1])
|
|
else px.bar(df, x=df.columns[0], y=df.columns[1], title=title)
|
|
}
|
|
|
|
# Select plot function based on column count
|
|
fig = plot_funcs.get(num_columns, lambda: px.imshow(df.corr(numeric_only=True), text_auto=True, title=title))()
|
|
|
|
# Use static rendering for speed
|
|
return pio.to_html(fig, full_html=False, include_plotlyjs=False, config={'staticPlot': True})
|
|
|
|
|
|
def calculate_estimated_1rm(weight, repetitions):
|
|
# Ensure the inputs are numeric
|
|
if repetitions == 0: # Avoid division by zero
|
|
return 0
|
|
estimated_1rm = round((100 * int(weight)) / (101.3 - 2.67123 * repetitions), 0)
|
|
return int(estimated_1rm) |