Files
workout/utils.py

465 lines
19 KiB
Python

import colorsys
from datetime import datetime, date, timedelta
import random
import numpy as np
import pandas as pd
def get_workouts(topsets):
# Get all unique workout_ids (No duplicates)
workout_ids = list(set([t['WorkoutId']
for t in topsets if t['WorkoutId'] is not None]))
# Group topsets into workouts
workouts = []
for workout_id in reversed(workout_ids):
topsets_in_workout = [
t for t in topsets if t['WorkoutId'] == workout_id]
workouts.append({
'WorkoutId': workout_id,
'StartDate': topsets_in_workout[0]['StartDate'],
'TopSets': [{"TopSetId": t['TopSetId'], "ExerciseId": t['ExerciseId'], "ExerciseName": t['ExerciseName'], "Weight": t['Weight'], "Repetitions": t['Repetitions'], "Estimated1RM": t['Estimated1RM']} for t in topsets_in_workout if t['TopSetId'] is not None]
})
workouts.sort(key=lambda x: x['StartDate'], reverse=True)
return workouts
def get_all_exercises_from_topsets(topsets):
exercise_ids = set([t['ExerciseId']
for t in topsets if t['ExerciseId'] is not None])
exercises = []
for exercise_id in exercise_ids:
exercises.append({
'ExerciseId': exercise_id,
'ExerciseName': next((t['ExerciseName'] for t in topsets if t['ExerciseId'] == exercise_id), 'Unknown')
})
return exercises
def get_topsets_for_person(person_topsets):
person_exercises = get_all_exercises_from_topsets(person_topsets)
exercises_topsets = []
for e in person_exercises:
exercise_topsets = [t for t in person_topsets if t['ExerciseId'] == e['ExerciseId']]
# Sort topsets by StartDate in descending order
sorted_topsets = sorted(exercise_topsets, key=lambda x: x['StartDate'], reverse=True)
# Extracting values and calculating value ranges for SVG dimensions
estimated_1rm = [t['Estimated1RM'] for t in exercise_topsets]
repetitions = [t['Repetitions'] for t in exercise_topsets]
weight = [t['Weight'] for t in exercise_topsets]
start_dates = [t['StartDate'] for t in exercise_topsets]
messages = [f'{t["Repetitions"]} x {t["Weight"]}kg ({t["Estimated1RM"]}kg E1RM) on {t["StartDate"].strftime("%d %b %y")}' for t in exercise_topsets]
epoch = 'All'
person_id = exercise_topsets[0]['PersonId']
exercise_id = exercise_topsets[0]['ExerciseId']
exercise_progress = get_exercise_graph_model(exercise_topsets[0]['ExerciseName'], estimated_1rm, repetitions, weight, start_dates, messages, epoch, person_id, exercise_id)
exercises_topsets.append({
'ExerciseId': e['ExerciseId'],
'ExerciseName': e['ExerciseName'],
'Topsets': sorted_topsets,
'ExerciseProgressGraph': exercise_progress
})
return exercises_topsets
def get_people_and_exercise_rep_maxes(topsets, selected_person_ids, selected_exercise_ids, min_date, max_date):
# Get all unique workout_ids (No duplicates)
people_ids = set([t['PersonId']
for t in topsets])
filtered_people_ids = [p for p in people_ids if p in selected_person_ids]
# Group topsets into workouts
people = []
for person_id in filtered_people_ids:
workouts_for_person = [
t for t in topsets if t['PersonId'] == person_id and t['ExerciseId'] in selected_exercise_ids and t['StartDate'] >= min_date and t['StartDate'] <= max_date]
if workouts_for_person:
people.append({
'PersonId': person_id,
'PersonName': workouts_for_person[0]['PersonName'],
'NumberOfWorkouts': len(list(set([t['WorkoutId'] for t in workouts_for_person if t['WorkoutId'] is not None]))),
'Exercises': get_topsets_for_person(workouts_for_person)
})
return {"People": people, "Stats": get_stats_from_topsets(topsets)}
def get_stats_from_topsets(topsets):
workout_count = len(set([t['WorkoutId']
for t in topsets if t['WorkoutId'] is not None]))
people_count = len(set([t['PersonId']
for t in topsets if t['PersonId'] is not None]))
workout_start_dates = [t['StartDate']
for t in topsets if t['StartDate'] is not None]
stats = [{"Text": "Total Workouts", "Value": workout_count},
{"Text": "Total Sets", "Value": len(topsets)}]
if people_count > 1:
stats.append({"Text": "People tracked", "Value": people_count})
if workout_count > 0:
first_workout_date = min(workout_start_dates)
last_workout_date = max(workout_start_dates)
stats.append({"Text": "Days Since First Workout", "Value": (
date.today() - first_workout_date).days})
if workout_count >= 2:
stats.append({"Text": "Days Since Last Workout",
"Value": (
date.today() - last_workout_date).days})
average_number_sets_per_workout = round(
len(topsets) / workout_count, 1)
stats.append({"Text": "Average sets per workout",
"Value": average_number_sets_per_workout})
training_duration = last_workout_date - first_workout_date
if training_duration > timedelta(days=0):
average_workouts_per_week = round(
workout_count / (training_duration.days / 7), 1)
stats.append({"Text": "Average Workouts Per Week",
"Value": average_workouts_per_week})
return stats
def convert_str_to_date(date_str, format='%Y-%m-%d'):
try:
return datetime.strptime(date_str, format).date()
except ValueError:
return None
except TypeError:
return None
def get_earliest_and_latest_workout_date(person):
if len(person['Workouts']) > 0:
return (min(person['Workouts'], key=lambda x: x['StartDate'])['StartDate'], max(person['Workouts'], key=lambda x: x['StartDate'])['StartDate'])
return (datetime.now().date(), datetime.now().date())
def filter_workout_topsets(workout, selected_exercise_ids):
workout['TopSets'] = [topset for topset in workout['TopSets']
if topset['ExerciseId'] in selected_exercise_ids]
return workout
def get_exercise_ids_from_workouts(workouts):
return list(set(flatten_list(list(map(lambda x: list(
map(lambda y: y['ExerciseId'], x['TopSets'])), workouts)))))
def flatten_list(list_of_lists):
return [item for sublist in list_of_lists for item in sublist]
def first_and_last_visible_days_in_month(first_day_of_month, last_day_of_month):
start = dict([(6, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)])
start_date = first_day_of_month - \
timedelta(days=start[first_day_of_month.weekday()])
end = dict([(6, 6), (0, 5), (1, 4), (2, 3), (3, 2), (4, 1), (5, 0)])
end_date = last_day_of_month + \
timedelta(days=end[last_day_of_month.weekday()])
return (start_date, end_date)
def flatten(lst):
"""
Flatten a list of lists.
"""
result = []
for item in lst:
if isinstance(item, list):
result.extend(flatten(item))
else:
result.append(item)
return result
def get_date_info(input_date, selected_view):
if selected_view not in ['month', 'year']:
raise ValueError(
'selected_view must be either "month" or "year"')
# First day of the month
first_day_of_month = input_date.replace(day=1)
# Last day of the month
if input_date.month == 12:
last_day_of_month = input_date.replace(
year=input_date.year+1, month=1, day=1) - timedelta(days=1)
else:
last_day_of_month = input_date.replace(
month=input_date.month+1, day=1) - timedelta(days=1)
# First and last day of the year
first_day_of_year = input_date.replace(month=1, day=1)
last_day_of_year = input_date.replace(
year=input_date.year+1, month=1, day=1) - timedelta(days=1)
# Next/previous month
year, month = divmod(input_date.year * 12 + input_date.month, 12)
next_month = date(year, month + 1, 1)
prev_month_last_day = first_day_of_month - timedelta(days=1)
prev_month = prev_month_last_day.replace(day=1)
# Next/previous year
next_year = input_date.replace(year=input_date.year+1)
prev_year = input_date.replace(year=input_date.year-1)
# Business logic, should move above to a separate function
if selected_view == 'month':
# Step 1: Find the first Sunday before or on the first day of the month
days_to_subtract = (first_day_of_month.weekday() + 1) % 7
start_date = first_day_of_month - timedelta(days=days_to_subtract)
# Step 2: Calculate the last day to display, based on the number of weeks
end_date = start_date + timedelta(days=6 * 7 - 1)
return {
'next_date': next_month,
'previous_date': prev_month,
'first_date_of_view': first_day_of_month,
'last_date_of_view': last_day_of_month,
'start_date': start_date,
'end_date': end_date,
}
elif selected_view == 'year':
return {
'next_date': next_year,
'previous_date': prev_year,
'first_date_of_view': first_day_of_year,
'last_date_of_view': last_day_of_year,
'start_date': first_day_of_year,
'end_date': last_day_of_year,
}
def get_exercise_graph_model(title, estimated_1rm, repetitions, weight, start_dates, messages, epoch, person_id, exercise_id):
min_date, max_date = min(start_dates), max(start_dates)
min_e1rm, max_e1rm = min(estimated_1rm), max(estimated_1rm)
min_reps, max_reps = min(repetitions), max(repetitions)
min_weight, max_weight = min(weight), max(weight)
# Calculate viewBox dimensions
date_range = max_date - min_date
total_span = date_range.days or 1
e1rm_range = (max_e1rm - min_e1rm) or 1
reps_range = (max_reps - min_reps) or 1
weight_range = (max_weight - min_weight) or 1
vb_width, vb_height = total_span, e1rm_range
vb_width *= 200 / vb_width # Scale to 200px width
vb_height *= 75 / vb_height # Scale to 75px height
# Scale estimated_1rm values for SVG plotting
estimated_1rm_scaled = [((value - min_e1rm) / e1rm_range) * vb_height for value in estimated_1rm]
repetitions_scaled = [((value - min_reps) / reps_range) * vb_height for value in repetitions]
weight_scaled = [((value - min_weight) / weight_range) * vb_height for value in weight]
relative_positions = [(date - min_date).days / total_span for date in start_dates]
best_fit_points = []
best_fit_formula = {}
# trry catch LinAlgError
try:
# Convert relative positions and scaled estimated 1RM values to numpy arrays
x = np.array(relative_positions)
y = np.array(estimated_1rm_scaled)
# Calculate the slope (m) and y-intercept (b) of the line of best fit
m, b = np.polyfit(x, y, 1)
# Generate points along the line of best fit
y_best_fit = [m * xi + b for xi in x]
best_fit_points = list(zip(y_best_fit, relative_positions))
# Convert the slope from scaled units per day to kg per day
slope_kg_per_day = (max_e1rm - min_e1rm) / total_span
best_fit_formula = {
'kg_per_week': round(slope_kg_per_day * 7, 1), # Convert to kg/week
'kg_per_month': round(slope_kg_per_day * 30, 1) # Convert to kg/month
}
except:
pass
# Create messages and zip data for SVG plotting
estimated_1rm_points = zip(estimated_1rm_scaled, relative_positions)
repetitions_points = zip(repetitions_scaled, relative_positions)
weight_points = zip(weight_scaled, relative_positions)
repetitions = {
'label': 'Reps',
'color': '#388fed',
'points': list(repetitions_points)
}
weight = {
'label': 'Weight',
'color': '#bd3178',
'points': list(weight_points)
}
estimated_1rm = {
'label': 'E1RM',
'color': '#2ca02c',
'points': list(estimated_1rm_points)
}
plot_labels = zip(relative_positions, messages)
# Return exercise data with SVG dimensions and data points
return {
'title': title,
'vb_width': vb_width,
'vb_height': vb_height,
'plots': [repetitions, weight, estimated_1rm],
'best_fit_points': best_fit_points,
'best_fit_formula': best_fit_formula,
'plot_labels': plot_labels,
'epochs': ['1M', '3M', '6M', 'All'],
'selected_epoch': epoch,
'person_id': person_id,
'exercise_id': exercise_id
}
def get_workout_counts(workouts, period='week'):
df = pd.DataFrame(workouts)
# Convert 'StartDate' to datetime and set period
df['StartDate'] = pd.to_datetime(df['StartDate'])
df['Period'] = df['StartDate'].dt.to_period('W' if period == 'week' else 'M')
# Group by PersonId, Period and count unique workouts
workout_counts = df.groupby(['PersonId', 'Period'])['WorkoutId'].nunique().reset_index()
# Convert 'Period' to timestamp using the start date of the period
workout_counts['Period'] = workout_counts['Period'].apply(lambda x: x.start_time)
# Pivot the result to get periods as columns
workout_counts_pivot = workout_counts.pivot(index='PersonId', columns='Period', values='WorkoutId').fillna(0)
# Include person names
names = df[['PersonId', 'PersonName']].drop_duplicates().set_index('PersonId')
workout_counts_final = names.join(workout_counts_pivot, how='left').fillna(0)
# Convert DataFrame to dictionary
result = workout_counts_final.reset_index().to_dict('records')
# Reformat the dictionary to desired structure
formatted_result = {}
for record in result:
person_id = record.pop('PersonId')
person_name = record.pop('PersonName')
pr_counts = {k: v for k, v in record.items()}
formatted_result[person_id] = {'PersonName': person_name, 'PRCounts': pr_counts}
return formatted_result
def count_prs_over_time(workouts, period='week'):
df = pd.DataFrame(workouts)
# Convert 'StartDate' to datetime
df['StartDate'] = pd.to_datetime(df['StartDate'])
# Set period as week or month
df['Period'] = df['StartDate'].dt.to_period('W' if period == 'week' else 'M')
# Group by Person, Exercise, and Period to find max Estimated1RM in each period
period_max = df.groupby(['PersonId', 'ExerciseId', 'Period'])['Estimated1RM'].max().reset_index()
# Determine all-time max Estimated1RM up to the start of each period
period_max['AllTimeMax'] = period_max.groupby(['PersonId', 'ExerciseId'])['Estimated1RM'].cummax().shift(1)
# Identify PRs as entries where the period's max Estimated1RM exceeds the all-time max
period_max['IsPR'] = period_max['Estimated1RM'] > period_max['AllTimeMax']
# Count PRs in each period for each person
pr_counts = period_max.groupby(['PersonId', 'Period'])['IsPR'].sum().reset_index()
# Convert 'Period' to timestamp using the start date of the period
pr_counts['Period'] = pr_counts['Period'].apply(lambda x: x.start_time)
# Pivot table to get the desired output format
output = pr_counts.pivot(index='PersonId', columns='Period', values='IsPR').fillna(0)
# Convert only the PR count columns to integers
for col in output.columns:
output[col] = output[col].astype(int)
# Merge with names and convert to desired format
names = df[['PersonId', 'PersonName']].drop_duplicates().set_index('PersonId')
output = names.join(output, how='left').fillna(0)
# Reset the index to bring 'PersonId' back as a column
output.reset_index(inplace=True)
# Convert to the final dictionary format with PRCounts nested
result = {}
for index, row in output.iterrows():
person_id = row['PersonId']
person_name = row['PersonName']
pr_counts = row.drop(['PersonId', 'PersonName']).to_dict()
result[person_id] = {"PersonName": person_name, "PRCounts": pr_counts}
return result
def get_weekly_pr_graph_model(title, weekly_pr_data):
# Assuming weekly_pr_data is in the format {1: {"PersonName": "Alice", "PRCounts": {Timestamp('2022-01-01', freq='W-MON'): 0, ...}}, 2: {...}, ...}
# Find the overall date range for all users
all_dates = [date for user_data in weekly_pr_data.values() for date in user_data["PRCounts"].keys()]
min_date, max_date = min(all_dates), max(all_dates)
total_span = (max_date - min_date).days or 1
relative_positions = [(date - min_date).days / total_span for date in all_dates]
# Calculate viewBox dimensions
max_value = max(max(user_data["PRCounts"].values()) for user_data in weekly_pr_data.values()) or 1
min_value = 0
value_range = max_value - min_value
vb_width = 200
vb_height= 75
plots = []
colors = get_distinct_colors(len(weekly_pr_data.items()))
for count, (user_id, user_data) in enumerate(weekly_pr_data.items()):
pr_counts = user_data["PRCounts"]
person_name = user_data["PersonName"]
values = pr_counts.values()
values_scaled = [((value - min_value) / value_range) * vb_height for value in values]
plot_points = list(zip(values_scaled, relative_positions))
messages = [f'{value} for {person_name} at {date.strftime("%d %b %y")}' for value, date in zip(values, pr_counts.keys())]
plot_labels = zip(values_scaled, relative_positions, messages)
# Create a plot for each user
plot = {
'label': person_name, # Use PersonName instead of User ID
'color': colors[count],
'points': plot_points,
'plot_labels': plot_labels
}
plots.append(plot)
# Return workout data with SVG dimensions and data points
return {
'title': title,
'vb_width': vb_width,
'vb_height': vb_height,
'plots': plots
}
def get_distinct_colors(n):
colors = []
for i in range(n):
# Divide the color wheel into n parts
hue = i / n
# Convert HSL (Hue, Saturation, Lightness) to RGB and then to a Hex string
rgb = colorsys.hls_to_rgb(hue, 0.6, 0.4) # Fixed lightness and saturation
hex_color = '#{:02x}{:02x}{:02x}'.format(int(rgb[0]*255), int(rgb[1]*255), int(rgb[2]*255))
colors.append(hex_color)
return colors