Replaces the Plotly-based graph generation in the SQL Explorer with direct SVG rendering within an HTML template, similar to the exercise progress sparklines. - Modifies `routes/sql_explorer.py` endpoints (`plot_query`, `plot_unsaved_query`) to fetch raw data instead of using pandas/Plotly. - Adds `utils.prepare_svg_plot_data` to process raw SQL results, determine plot type (scatter, line, bar, table), normalize data, and prepare it for SVG. - Creates `templates/partials/sql_explorer/svg_plot.html` to render the SVG plot with axes, ticks, labels, and basic tooltips. - Removes the `generate_plot` function's usage for SQL Explorer and the direct dependency on Plotly for this feature.
339 lines
15 KiB
Python
339 lines
15 KiB
Python
import os
|
|
import requests # Import requests library
|
|
import json # Import json library
|
|
from flask import Blueprint, render_template, request, current_app, jsonify
|
|
from jinja2_fragments import render_block
|
|
from flask_htmx import HTMX
|
|
from extensions import db
|
|
from utils import prepare_svg_plot_data # Will be created for SVG data prep
|
|
|
|
sql_explorer_bp = Blueprint('sql_explorer', __name__, url_prefix='/sql')
|
|
htmx = HTMX()
|
|
|
|
def _get_schema_info(schema='public'):
|
|
"""Fetches schema information directly."""
|
|
tables_result = db.execute("""
|
|
SELECT table_name
|
|
FROM information_schema.tables
|
|
WHERE table_schema = %s AND table_type = 'BASE TABLE';
|
|
""", [schema])
|
|
tables = [row['table_name'] for row in tables_result]
|
|
|
|
schema_info = {}
|
|
for table in tables:
|
|
columns_result = db.execute("""
|
|
SELECT column_name, data_type
|
|
FROM information_schema.columns
|
|
WHERE table_schema = %s AND table_name = %s
|
|
ORDER BY ordinal_position;
|
|
""", [schema, table])
|
|
columns = [(row['column_name'], row['data_type']) for row in columns_result]
|
|
|
|
primary_keys_result = db.execute("""
|
|
SELECT kcu.column_name
|
|
FROM information_schema.table_constraints tc
|
|
JOIN information_schema.key_column_usage kcu
|
|
ON tc.constraint_name = kcu.constraint_name AND tc.table_schema = kcu.table_schema
|
|
WHERE tc.constraint_type = 'PRIMARY KEY' AND tc.table_schema = %s AND tc.table_name = %s;
|
|
""", [schema, table])
|
|
primary_keys = [row['column_name'] for row in primary_keys_result]
|
|
|
|
foreign_keys_result = db.execute("""
|
|
SELECT kcu.column_name AS fk_column, ccu.table_name AS referenced_table, ccu.column_name AS referenced_column
|
|
FROM information_schema.table_constraints AS tc
|
|
JOIN information_schema.key_column_usage AS kcu
|
|
ON tc.constraint_name = kcu.constraint_name AND tc.table_schema = kcu.table_schema
|
|
JOIN information_schema.constraint_column_usage AS ccu
|
|
ON ccu.constraint_name = tc.constraint_name AND ccu.table_schema = tc.table_schema
|
|
WHERE tc.constraint_type = 'FOREIGN KEY' AND tc.table_schema = %s AND tc.table_name = %s;
|
|
""", [schema, table])
|
|
foreign_keys = [(row['fk_column'], row['referenced_table'], row['referenced_column']) for row in foreign_keys_result]
|
|
|
|
schema_info[table] = {
|
|
'columns': columns,
|
|
'primary_keys': primary_keys,
|
|
'foreign_keys': foreign_keys
|
|
}
|
|
return schema_info
|
|
|
|
def _map_data_type_for_sql(postgres_type):
|
|
"""Maps PostgreSQL types to standard SQL types (simplified)."""
|
|
return {
|
|
'character varying': 'VARCHAR', 'varchar': 'VARCHAR', 'text': 'TEXT',
|
|
'integer': 'INTEGER', 'bigint': 'BIGINT', 'boolean': 'BOOLEAN',
|
|
'timestamp without time zone': 'TIMESTAMP', 'timestamp with time zone': 'TIMESTAMPTZ',
|
|
'numeric': 'NUMERIC', 'real': 'REAL', 'date': 'DATE'
|
|
}.get(postgres_type, postgres_type.upper())
|
|
|
|
def _map_data_type(postgres_type):
|
|
"""Maps PostgreSQL types to Mermaid ER diagram types."""
|
|
type_mapping = {
|
|
'integer': 'int', 'bigint': 'int', 'smallint': 'int',
|
|
'character varying': 'string', 'varchar': 'string', 'text': 'string',
|
|
'date': 'date', 'timestamp without time zone': 'datetime',
|
|
'timestamp with time zone': 'datetime', 'boolean': 'bool',
|
|
'numeric': 'float', 'real': 'float'
|
|
}
|
|
return type_mapping.get(postgres_type, 'string')
|
|
|
|
def _generate_mermaid_er(schema_info):
|
|
"""Generates Mermaid ER diagram code from schema info."""
|
|
mermaid_lines = ["erDiagram"]
|
|
for table, info in schema_info.items():
|
|
mermaid_lines.append(f" {table} {{")
|
|
for column_name, data_type in info['columns']:
|
|
mermaid_data_type = _map_data_type(data_type)
|
|
pk_marker = " PK" if column_name in info.get('primary_keys', []) else ""
|
|
mermaid_lines.append(f" {mermaid_data_type} {column_name}{pk_marker}")
|
|
mermaid_lines.append(" }")
|
|
|
|
for table, info in schema_info.items():
|
|
for fk_column, referenced_table, referenced_column in info['foreign_keys']:
|
|
relation = f" {table} }}|--|| {referenced_table} : \"{fk_column} to {referenced_column}\""
|
|
mermaid_lines.append(relation)
|
|
return "\n".join(mermaid_lines)
|
|
|
|
def _generate_create_script(schema_info):
|
|
"""Generates SQL CREATE TABLE scripts from schema info."""
|
|
lines = []
|
|
for table, info in schema_info.items():
|
|
columns = info['columns']
|
|
pks = info.get('primary_keys', [])
|
|
fks = info['foreign_keys']
|
|
column_defs = []
|
|
for column_name, data_type in columns:
|
|
sql_type = _map_data_type_for_sql(data_type)
|
|
column_defs.append(f' "{column_name}" {sql_type}')
|
|
if pks:
|
|
pk_columns = ", ".join(f'"{pk}"' for pk in pks)
|
|
column_defs.append(f' PRIMARY KEY ({pk_columns})')
|
|
|
|
columns_sql = ",\n".join(column_defs)
|
|
create_stmt = f'CREATE TABLE "{table}" (\n{columns_sql}\n);'
|
|
lines.append(create_stmt)
|
|
|
|
for fk_column, ref_table, ref_col in fks:
|
|
alter_stmt = (
|
|
f'ALTER TABLE "{table}" ADD CONSTRAINT "fk_{table}_{fk_column}" '
|
|
f'FOREIGN KEY ("{fk_column}") REFERENCES "{ref_table}" ("{ref_col}");'
|
|
)
|
|
lines.append(alter_stmt)
|
|
lines.append("")
|
|
return "\n".join(lines)
|
|
|
|
|
|
def _execute_sql(query):
|
|
"""Executes arbitrary SQL query, returning results, columns, and error."""
|
|
results, columns, error = None, [], None
|
|
try:
|
|
results = db.execute(query)
|
|
if results:
|
|
columns = list(results[0].keys()) if isinstance(results, list) and results else []
|
|
except Exception as e:
|
|
error = str(e)
|
|
db.getDB().rollback()
|
|
return (results, columns, error)
|
|
|
|
def _save_query(title, query):
|
|
"""Saves a query to the database."""
|
|
error = None
|
|
if not title: return "Must provide title"
|
|
try:
|
|
db.execute("INSERT INTO saved_query (title, query) VALUES (%s, %s)", [title, query], commit=True)
|
|
except Exception as e:
|
|
error = str(e)
|
|
db.getDB().rollback()
|
|
return error
|
|
|
|
def _list_saved_queries():
|
|
"""Lists all saved queries."""
|
|
return db.execute("SELECT id, title, query FROM saved_query ORDER BY title")
|
|
|
|
def _get_saved_query(query_id):
|
|
"""Fetches a specific saved query."""
|
|
result = db.execute("SELECT title, query FROM saved_query WHERE id=%s", [query_id], one=True)
|
|
return (result['title'], result['query']) if result else (None, None)
|
|
|
|
def _delete_saved_query(query_id):
|
|
"""Deletes a saved query."""
|
|
db.execute("DELETE FROM saved_query WHERE id=%s", [query_id], commit=True)
|
|
|
|
def _generate_sql_from_natural_language(natural_query):
|
|
"""Generates SQL query from natural language using Gemini REST API."""
|
|
gemni_model = os.environ.get("GEMINI_MODEL","gemini-2.0-flash")
|
|
api_key = os.environ.get("GEMINI_API_KEY")
|
|
if not api_key:
|
|
return None, "GEMINI_API_KEY environment variable not set."
|
|
|
|
# Using gemini-pro model endpoint
|
|
api_url = f"https://generativelanguage.googleapis.com/v1beta/models/{gemni_model}:generateContent?key={api_key}"
|
|
headers = {'Content-Type': 'application/json'}
|
|
|
|
try:
|
|
# Get and format schema
|
|
schema_info = _get_schema_info()
|
|
schema_string = _generate_create_script(schema_info)
|
|
|
|
prompt = f"""Given the following database schema:
|
|
```sql
|
|
{schema_string}
|
|
```
|
|
|
|
Generate a PostgreSQL query that answers the following question: "{natural_query}"
|
|
|
|
Return ONLY the SQL query, without any explanation or surrounding text/markdown.
|
|
"""
|
|
# Construct the request payload
|
|
payload = json.dumps({
|
|
"contents": [{
|
|
"parts": [{"text": prompt}]
|
|
}]
|
|
})
|
|
|
|
# Make the POST request
|
|
response = requests.post(api_url, headers=headers, data=payload)
|
|
response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx)
|
|
|
|
# Parse the response
|
|
response_data = response.json()
|
|
|
|
# Extract the generated text - structure might vary slightly based on API version/response
|
|
# Safely navigate the response structure
|
|
candidates = response_data.get('candidates', [])
|
|
if not candidates:
|
|
return None, "No candidates found in API response."
|
|
|
|
content = candidates[0].get('content', {})
|
|
parts = content.get('parts', [])
|
|
if not parts:
|
|
return None, "No parts found in API response content."
|
|
|
|
generated_sql = parts[0].get('text', '').strip()
|
|
|
|
# Basic parsing: remove potential markdown code fences
|
|
if generated_sql.startswith("```sql"):
|
|
generated_sql = generated_sql[6:]
|
|
if generated_sql.endswith("```"):
|
|
generated_sql = generated_sql[:-3]
|
|
|
|
# Remove leading SQL comment lines
|
|
sql_lines = generated_sql.strip().splitlines()
|
|
filtered_lines = [line for line in sql_lines if not line.strip().startswith('--')]
|
|
final_sql = "\n".join(filtered_lines).strip()
|
|
|
|
return final_sql, None
|
|
|
|
except requests.exceptions.RequestException as e:
|
|
current_app.logger.error(f"Gemini API request error: {e}")
|
|
return None, f"Error communicating with API: {e}"
|
|
except (KeyError, IndexError, Exception) as e:
|
|
current_app.logger.error(f"Error processing Gemini API response: {e} - Response: {response_data if 'response_data' in locals() else 'N/A'}")
|
|
return None, f"Error processing API response: {e}"
|
|
|
|
|
|
# --- Routes ---
|
|
|
|
@sql_explorer_bp.route("/explorer", methods=['GET'])
|
|
def sql_explorer():
|
|
saved_queries = _list_saved_queries()
|
|
if htmx:
|
|
return render_block(current_app.jinja_env, 'sql_explorer.html', 'content', saved_queries=saved_queries)
|
|
return render_template('sql_explorer.html', saved_queries=saved_queries)
|
|
|
|
@sql_explorer_bp.route("/query", methods=['POST'])
|
|
def sql_query():
|
|
query = request.form.get('query')
|
|
title = request.form.get('title')
|
|
error = _save_query(title, query)
|
|
saved_queries = _list_saved_queries()
|
|
return render_template('partials/sql_explorer/sql_query.html',
|
|
title=title, query=query, error=error, saved_queries=saved_queries)
|
|
|
|
@sql_explorer_bp.route("/query/execute", methods=['POST'])
|
|
def execute_sql_query():
|
|
query = request.form.get('query')
|
|
(results, columns, error) = _execute_sql(query)
|
|
return render_template('partials/sql_explorer/results.html',
|
|
results=results, columns=columns, error=error)
|
|
|
|
@sql_explorer_bp.route('/load_query/<int:query_id>', methods=['GET'])
|
|
def load_sql_query(query_id):
|
|
(title, query) = _get_saved_query(query_id)
|
|
saved_queries = _list_saved_queries()
|
|
return render_template('partials/sql_explorer/sql_query.html',
|
|
title=title, query=query, saved_queries=saved_queries)
|
|
|
|
@sql_explorer_bp.route('/delete_query/<int:query_id>', methods=['DELETE'])
|
|
def delete_sql_query(query_id):
|
|
_delete_saved_query(query_id)
|
|
saved_queries = _list_saved_queries()
|
|
return render_template('partials/sql_explorer/sql_query.html',
|
|
title="", query="", saved_queries=saved_queries)
|
|
|
|
@sql_explorer_bp.route("/schema", methods=['GET'])
|
|
def sql_schema():
|
|
schema_info = _get_schema_info()
|
|
mermaid_code = _generate_mermaid_er(schema_info)
|
|
create_sql = _generate_create_script(schema_info)
|
|
return render_template('partials/sql_explorer/schema.html', mermaid_code=mermaid_code, create_sql=create_sql)
|
|
|
|
@sql_explorer_bp.route("/plot/<int:query_id>", methods=['GET'])
|
|
def plot_query(query_id):
|
|
(title, query) = _get_saved_query(query_id)
|
|
if not query: return "Query not found", 404
|
|
# Fetch raw results instead of DataFrame
|
|
(results, columns, error) = _execute_sql(query)
|
|
if error:
|
|
# Return an HTML snippet indicating the error
|
|
return f'<div class="p-4 text-red-700 bg-red-100 border border-red-400 rounded">Error executing query: {error}</div>', 400
|
|
if not results:
|
|
# Return an HTML snippet indicating no data
|
|
return '<div class="p-4 text-yellow-700 bg-yellow-100 border border-yellow-400 rounded">No data returned by query.</div>'
|
|
|
|
try:
|
|
# Prepare data for SVG plotting (function to be created in utils.py)
|
|
plot_data = prepare_svg_plot_data(results, columns, title)
|
|
# Render the new SVG template
|
|
return render_template('partials/sql_explorer/svg_plot.html', **plot_data)
|
|
except Exception as e:
|
|
current_app.logger.error(f"Error preparing SVG plot data: {e}")
|
|
# Return an HTML snippet indicating a processing error
|
|
return f'<div class="p-4 text-red-700 bg-red-100 border border-red-400 rounded">Error preparing plot data: {e}</div>', 500
|
|
|
|
@sql_explorer_bp.route("/plot/show", methods=['POST'])
|
|
def plot_unsaved_query():
|
|
query = request.form.get('query')
|
|
title = request.form.get('title', 'SQL Query Plot') # Add default title
|
|
# Fetch raw results instead of DataFrame
|
|
(results, columns, error) = _execute_sql(query)
|
|
if error:
|
|
# Return an HTML snippet indicating the error
|
|
return f'<div class="p-4 text-red-700 bg-red-100 border border-red-400 rounded">Error executing query: {error}</div>', 400
|
|
if not results:
|
|
# Return an HTML snippet indicating no data
|
|
return '<div class="p-4 text-yellow-700 bg-yellow-100 border border-yellow-400 rounded">No data returned by query.</div>'
|
|
|
|
try:
|
|
# Prepare data for SVG plotting (function to be created in utils.py)
|
|
plot_data = prepare_svg_plot_data(results, columns, title)
|
|
# Render the new SVG template
|
|
return render_template('partials/sql_explorer/svg_plot.html', **plot_data)
|
|
except Exception as e:
|
|
current_app.logger.error(f"Error preparing SVG plot data: {e}")
|
|
# Return an HTML snippet indicating a processing error
|
|
return f'<div class="p-4 text-red-700 bg-red-100 border border-red-400 rounded">Error preparing plot data: {e}</div>', 500
|
|
|
|
@sql_explorer_bp.route("/generate_sql", methods=['POST'])
|
|
def generate_sql():
|
|
"""Generates SQL from natural language via Gemini REST API."""
|
|
natural_query = request.form.get('natural_query')
|
|
if not natural_query:
|
|
return ""
|
|
|
|
generated_sql, error = _generate_sql_from_natural_language(natural_query)
|
|
|
|
if error:
|
|
# Return error message prepended, to be displayed in the textarea
|
|
return f"-- Error generating SQL: {error}\n\n"
|
|
|
|
return generated_sql if generated_sql else "-- No SQL generated." |