Files
workout/features/people_graphs.py
Peter Stockings e947feb3e3 refactor(sql_explorer): Replace Plotly with SVG rendering for plots
Replaces the Plotly-based graph generation in the SQL Explorer with direct SVG rendering within an HTML template, similar to the exercise progress sparklines.

- Modifies `routes/sql_explorer.py` endpoints (`plot_query`, `plot_unsaved_query`) to fetch raw data instead of using pandas/Plotly.
- Adds `utils.prepare_svg_plot_data` to process raw SQL results, determine plot type (scatter, line, bar, table), normalize data, and prepare it for SVG.
- Creates `templates/partials/sql_explorer/svg_plot.html` to render the SVG plot with axes, ticks, labels, and basic tooltips.
- Removes the `generate_plot` function's usage for SQL Explorer and the direct dependency on Plotly for this feature.
2025-04-15 19:34:26 +10:00

272 lines
9.2 KiB
Python

import pandas as pd
from utils import get_distinct_colors, calculate_estimated_1rm
class PeopleGraphs:
def __init__(self, db_connection_method):
self.execute = db_connection_method
def get(self, selected_people_ids=None, min_date=None, max_date=None, selected_exercise_ids=None):
"""
Fetch workout topsets, calculate Estimated1RM in Python,
then generate weekly workout & PR graphs.
"""
# Build query (no in-SQL 1RM calculation).
query = """
SELECT
P.person_id AS "PersonId",
P.name AS "PersonName",
W.workout_id AS "WorkoutId",
W.start_date AS "StartDate",
T.topset_id AS "TopSetId",
E.exercise_id AS "ExerciseId",
E.name AS "ExerciseName",
T.repetitions AS "Repetitions",
T.weight AS "Weight"
FROM Person P
LEFT JOIN Workout W ON P.person_id = W.person_id
LEFT JOIN TopSet T ON W.workout_id = T.workout_id
LEFT JOIN Exercise E ON T.exercise_id = E.exercise_id
WHERE TRUE
"""
params = []
if selected_people_ids:
query += f" AND P.person_id IN ({', '.join(['%s'] * len(selected_people_ids))})"
params.extend(selected_people_ids)
if min_date:
query += " AND W.start_date >= %s"
params.append(min_date)
if max_date:
query += " AND W.start_date <= %s"
params.append(max_date)
if selected_exercise_ids:
query += f" AND E.exercise_id IN ({', '.join(['%s'] * len(selected_exercise_ids))})"
params.extend(selected_exercise_ids)
# Execute and convert to DataFrame
raw_data = self.execute(query, params)
if not raw_data:
# Return empty graphs if no data at all
return [
self.get_graph_model("Workouts per week", {}),
self.get_graph_model("PRs per week", {})
]
df = pd.DataFrame(raw_data)
# Calculate Estimated1RM in Python
df['Estimated1RM'] = df.apply(
lambda row: calculate_estimated_1rm(row["Weight"], row["Repetitions"]), axis=1
)
# Build the weekly data models
weekly_counts = self.get_workout_counts(df, period='week')
weekly_pr_counts = self.count_prs_over_time(df, period='week')
return [
self.get_graph_model("Workouts per week", weekly_counts),
self.get_graph_model("PRs per week", weekly_pr_counts)
]
def _prepare_period_column(self, df, period='week'):
"""
Convert StartDate to datetime and add a Period column
based on 'week' or 'month' as needed.
"""
df['StartDate'] = pd.to_datetime(df['StartDate'], errors='coerce')
freq = 'W' if period == 'week' else 'M'
df['Period'] = df['StartDate'].dt.to_period(freq)
return df
def get_workout_counts(self, df, period='week'):
"""
Returns a dictionary:
{
person_id: {
'PersonName': 'Alice',
'PRCounts': {
Timestamp('2023-01-02'): 2,
...
}
},
...
}
representing how many workouts each person performed per time period.
"""
# Make a copy and prepare Period column
df = self._prepare_period_column(df.copy(), period)
# Count unique workouts per (PersonId, PersonName, Period)
grp = (
df.groupby(['PersonId', 'PersonName', 'Period'], as_index=False)['WorkoutId']
.nunique()
.rename(columns={'WorkoutId': 'Count'})
)
# Convert each Period to its start time
grp['Period'] = grp['Period'].apply(lambda p: p.start_time)
return self._pivot_to_graph_dict(
grp,
index_col='PersonId',
name_col='PersonName',
period_col='Period',
value_col='Count'
)
def count_prs_over_time(self, df, period='week'):
"""
Returns a dictionary:
{
person_id: {
'PersonName': 'Alice',
'PRCounts': {
Timestamp('2023-01-02'): 1,
...
}
},
...
}
representing how many PRs each person hit per time period.
"""
# Make a copy and prepare Period column
df = self._prepare_period_column(df.copy(), period)
# Max 1RM per (Person, Exercise, Period)
grouped = (
df.groupby(['PersonId', 'PersonName', 'ExerciseId', 'Period'], as_index=False)['Estimated1RM']
.max()
.rename(columns={'Estimated1RM': 'PeriodMax'})
)
# Sort so we can track "all-time max" up to that row
grouped.sort_values(by=['PersonId', 'ExerciseId', 'Period'], inplace=True)
# For each person & exercise, track the cumulative max (shifted by 1)
grouped['AllTimeMax'] = grouped.groupby(['PersonId', 'ExerciseId'])['PeriodMax'].cummax().shift(1)
grouped['IsPR'] = (grouped['PeriodMax'] > grouped['AllTimeMax']).astype(int)
# Sum PRs across exercises for (Person, Period)
pr_counts = (
grouped.groupby(['PersonId', 'PersonName', 'Period'], as_index=False)['IsPR']
.sum()
.rename(columns={'IsPR': 'Count'})
)
pr_counts['Period'] = pr_counts['Period'].apply(lambda p: p.start_time)
return self._pivot_to_graph_dict(
pr_counts,
index_col='PersonId',
name_col='PersonName',
period_col='Period',
value_col='Count'
)
def _pivot_to_graph_dict(self, df, index_col, name_col, period_col, value_col):
"""
Convert [index_col, name_col, period_col, value_col]
into a nested dictionary for plotting:
{
person_id: {
'PersonName': <...>,
'PRCounts': {
<timestamp>: <value>,
...
}
},
...
}
"""
if df.empty:
return {}
pivoted = df.pivot(
index=[index_col, name_col],
columns=period_col,
values=value_col
).fillna(0)
pivoted.reset_index(inplace=True)
result = {}
for _, row in pivoted.iterrows():
pid = row[index_col]
pname = row[name_col]
# Remaining columns = date -> count
period_counts = row.drop([index_col, name_col]).to_dict()
result[pid] = {
'PersonName': pname,
'PRCounts': period_counts
}
return result
def get_graph_model(self, title, data_dict):
"""
Builds a line-graph model from a dictionary of the form:
{
person_id: {
'PersonName': 'Alice',
'PRCounts': {
Timestamp('2023-01-02'): 2,
Timestamp('2023-01-09'): 1,
...
}
},
...
}
"""
if not data_dict:
return {
'title': title,
'vb_width': 200,
'vb_height': 75,
'plots': []
}
# Gather all dates & values
all_dates = []
all_values = []
for user_data in data_dict.values():
all_dates.extend(user_data['PRCounts'].keys())
all_values.extend(user_data['PRCounts'].values())
min_date = min(all_dates)
max_date = max(all_dates)
date_span = max((max_date - min_date).days, 1)
max_val = max(all_values)
min_val = 0
val_range = max_val - min_val if max_val != min_val else 1
vb_width, vb_height = 200, 75
colors = get_distinct_colors(len(data_dict))
plots = []
for i, (pid, user_data) in enumerate(data_dict.items()):
name = user_data['PersonName']
pr_counts = user_data['PRCounts']
# Sort by date so points are in chronological order
sorted_pr = sorted(pr_counts.items(), key=lambda x: x[0])
points = []
labels = []
for d, val in sorted_pr:
# Scale x,y to fit [0..1], then we multiply y by vb_height
x = (d - min_date).days / date_span
y = (val - min_val) / val_range * vb_height
points.append((y, x))
labels.append((y, x, f'{val} for {name} at {d.strftime("%d %b %y")}'))
plots.append({
'label': name,
'color': colors[i],
'points': points,
'plot_labels': labels
})
return {
'title': title,
'vb_width': vb_width,
'vb_height': vb_height,
'plots': plots
}