Files
workout/utils.py

250 lines
9.9 KiB
Python

from datetime import datetime, date, timedelta
import json
def get_workouts(topsets):
# Get all unique workout_ids (No duplicates)
workout_ids = list(set([t['WorkoutId']
for t in topsets if t['WorkoutId'] is not None]))
# Group topsets into workouts
workouts = []
for workout_id in reversed(workout_ids):
topsets_in_workout = [
t for t in topsets if t['WorkoutId'] == workout_id]
workouts.append({
'WorkoutId': workout_id,
'StartDate': topsets_in_workout[0]['StartDate'],
'TopSets': [{"TopSetId": t['TopSetId'], "ExerciseId": t['ExerciseId'], "ExerciseName": t['ExerciseName'], "Weight": t['Weight'], "Repetitions": t['Repetitions'], "Estimated1RM": t['Estimated1RM']} for t in topsets_in_workout if t['TopSetId'] is not None]
})
workouts.sort(key=lambda x: x['StartDate'], reverse=True)
return workouts
def get_all_exercises_from_topsets(topsets):
exercise_ids = set([t['ExerciseId']
for t in topsets if t['ExerciseId'] is not None])
exercises = []
for exercise_id in exercise_ids:
exercises.append({
'ExerciseId': exercise_id,
'ExerciseName': next((t['ExerciseName'] for t in topsets if t['ExerciseId'] == exercise_id), 'Unknown')
})
return exercises
def get_rep_maxes_for_person(person_topsets):
person_exercises = get_all_exercises_from_topsets(person_topsets)
rep_maxes_in_exercises = []
for e in person_exercises:
exercise_topsets = [
t for t in person_topsets if t['ExerciseId'] == e['ExerciseId']]
set_reps = set([t['Repetitions'] for t in exercise_topsets])
topsets_for_exercise = []
for rep in set_reps:
reps = [t for t in exercise_topsets if t['Repetitions'] == rep]
max_weight = max([t['Weight'] for t in reps])
max_topset_for_rep = [t for t in reps if t['Weight'] == max_weight]
topsets_for_exercise.append({
'StartDate': max_topset_for_rep[0]['StartDate'].strftime("%b %d %Y"),
'Repetitions': rep,
'Weight': max_weight,
'Estimated1RM': max_topset_for_rep[0]['Estimated1RM'],
})
# datetime.strptime(x['StartDate'], "%Y-%m-%d")
topsets_for_exercise.sort(
key=lambda x: x['Repetitions'], reverse=True)
rep_maxes_in_exercises.append({
'ExerciseId': e['ExerciseId'],
'ExerciseName': e['ExerciseName'],
'RepMaxes': topsets_for_exercise,
'EstimatedOneRepMaxProgressions': {
'StartDates': json.dumps([t['StartDate'].strftime("%Y-%m-%d") for t in exercise_topsets]),
'TopSets': json.dumps([f"{t['Repetitions']} x {t['Weight']}kg" for t in exercise_topsets]),
'Estimated1RMs': json.dumps([t['Estimated1RM'] for t in exercise_topsets]),
}
})
return rep_maxes_in_exercises
def get_people_and_exercise_rep_maxes(topsets, selected_person_ids, selected_exercise_ids, min_date, max_date):
# Get all unique workout_ids (No duplicates)
people_ids = set([t['PersonId']
for t in topsets])
filtered_people_ids = [p for p in people_ids if p in selected_person_ids]
# Group topsets into workouts
people = []
for person_id in filtered_people_ids:
workouts_for_person = [
t for t in topsets if t['PersonId'] == person_id and t['ExerciseId'] in selected_exercise_ids and t['StartDate'] >= min_date and t['StartDate'] <= max_date]
if workouts_for_person:
people.append({
'PersonId': person_id,
'PersonName': workouts_for_person[0]['PersonName'],
'NumberOfWorkouts': len(list(set([t['WorkoutId'] for t in workouts_for_person if t['WorkoutId'] is not None]))),
'Exercises': get_rep_maxes_for_person(workouts_for_person)
})
return {"People": people, "Stats": get_stats_from_topsets(topsets)}
def get_stats_from_topsets(topsets):
workout_count = len(set([t['WorkoutId']
for t in topsets if t['WorkoutId'] is not None]))
people_count = len(set([t['PersonId']
for t in topsets if t['PersonId'] is not None]))
workout_start_dates = [t['StartDate']
for t in topsets if t['StartDate'] is not None]
stats = [{"Text": "Total Workouts", "Value": workout_count},
{"Text": "Total Sets", "Value": len(topsets)}]
if people_count > 1:
stats.append({"Text": "People tracked", "Value": people_count})
if workout_count > 0:
first_workout_date = min(workout_start_dates)
last_workout_date = max(workout_start_dates)
stats.append({"Text": "Days Since First Workout", "Value": (
date.today() - first_workout_date).days})
if workout_count >= 2:
stats.append({"Text": "Days Since Last Workout",
"Value": (
date.today() - last_workout_date).days})
average_number_sets_per_workout = round(
len(topsets) / workout_count, 1)
stats.append({"Text": "Average sets per workout",
"Value": average_number_sets_per_workout})
training_duration = last_workout_date - first_workout_date
if training_duration > timedelta(days=0):
average_workouts_per_week = round(
workout_count / (training_duration.days / 7), 1)
stats.append({"Text": "Average Workouts Per Week",
"Value": average_workouts_per_week})
return stats
def convert_str_to_date(date_str, format='%Y-%m-%d'):
try:
return datetime.strptime(date_str, format).date()
except ValueError:
return None
except TypeError:
return None
def get_earliest_and_latest_workout_date(person):
if len(person['Workouts']) > 0:
return (min(person['Workouts'], key=lambda x: x['StartDate'])['StartDate'], max(person['Workouts'], key=lambda x: x['StartDate'])['StartDate'])
return (datetime.now().date(), datetime.now().date())
def filter_workout_topsets(workout, selected_exercise_ids):
workout['TopSets'] = [topset for topset in workout['TopSets']
if topset['ExerciseId'] in selected_exercise_ids]
return workout
def get_exercise_ids_from_workouts(workouts):
return list(set(flatten_list(list(map(lambda x: list(
map(lambda y: y['ExerciseId'], x['TopSets'])), workouts)))))
def flatten_list(list_of_lists):
return [item for sublist in list_of_lists for item in sublist]
def first_and_last_visible_days_in_month(first_day_of_month, last_day_of_month):
start = dict([(6, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)])
start_date = first_day_of_month - \
timedelta(days=start[first_day_of_month.weekday()])
end = dict([(6, 6), (0, 5), (1, 4), (2, 3), (3, 2), (4, 1), (5, 0)])
end_date = last_day_of_month + \
timedelta(days=end[last_day_of_month.weekday()])
return (start_date, end_date)
def flatten(lst):
"""
Flatten a list of lists.
"""
result = []
for item in lst:
if isinstance(item, list):
result.extend(flatten(item))
else:
result.append(item)
return result
def get_date_info(input_date, selected_view):
if selected_view not in ['month', 'year']:
raise ValueError(
'selected_view must be either "month" or "year"')
# First day of the month
first_day_of_month = input_date.replace(day=1)
# Last day of the month
if input_date.month == 12:
last_day_of_month = input_date.replace(
year=input_date.year+1, month=1, day=1) - timedelta(days=1)
else:
last_day_of_month = input_date.replace(
month=input_date.month+1, day=1) - timedelta(days=1)
# First and last day of the year
first_day_of_year = input_date.replace(month=1, day=1)
last_day_of_year = input_date.replace(
year=input_date.year+1, month=1, day=1) - timedelta(days=1)
# Next/previous week
next_week = input_date + timedelta(weeks=1)
prev_week = input_date - timedelta(weeks=1)
# Next/previous month
year, month = divmod(input_date.year * 12 + input_date.month, 12)
next_month = date(year, month + 1, 1)
prev_month_last_day = first_day_of_month - timedelta(days=1)
prev_month = prev_month_last_day.replace(day=1)
# Next/previous year
next_year = input_date.replace(year=input_date.year+1)
prev_year = input_date.replace(year=input_date.year-1)
# Business logic, should move above to a separate function
if selected_view == 'month':
start = dict([(6, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)])
start_date = first_day_of_month - \
timedelta(days=start[first_day_of_month.weekday()])
end = dict([(6, 6), (0, 5), (1, 4), (2, 3), (3, 2), (4, 1), (5, 0)])
end_date = last_day_of_month + \
timedelta(days=end[last_day_of_month.weekday()])
return {
'next_date': next_month,
'previous_date': prev_month,
'first_date_of_view': first_day_of_month,
'last_date_of_view': last_day_of_month,
'start_date': start_date,
'end_date': end_date,
}
elif selected_view == 'year':
return {
'next_date': next_year,
'previous_date': prev_year,
'first_date_of_view': first_day_of_year,
'last_date_of_view': last_day_of_year,
'start_date': first_day_of_year,
'end_date': last_day_of_year,
}