Here is a conventional commit message summarizing the changes: ``` feat: Refactor SQL Explorer into blueprint - Moved SQL Explorer routes (view explorer, save/load/execute/delete queries, view schema, plot queries) from `app.py` into a new blueprint at `routes/sql_explorer.py`. - Added `/sql` URL prefix to the blueprint. - Registered the new `sql_explorer_bp` blueprint in `app.py`. - Removed the original SQL Explorer route definitions from `app.py`. - Updated `url_for` calls in relevant templates (`sql_explorer.html`, `partials/sql_explorer/sql_query.html`, `base.html`) to reference the new blueprint endpoints (e.g., `sql_explorer.sql_explorer`). - Updated `templates/changelog/changelog.html` to document this refactoring. ```
222 lines
9.9 KiB
Python
222 lines
9.9 KiB
Python
from flask import Blueprint, render_template, request, current_app
|
|
from jinja2_fragments import render_block
|
|
from flask_htmx import HTMX
|
|
from extensions import db
|
|
from utils import generate_plot
|
|
|
|
sql_explorer_bp = Blueprint('sql_explorer', __name__, url_prefix='/sql')
|
|
htmx = HTMX()
|
|
|
|
# --- Database Helper Functions (Moved from features/sql_explorer.py) ---
|
|
|
|
def _get_schema_info(schema='public'):
|
|
"""Fetches schema information directly."""
|
|
tables_result = db.execute("""
|
|
SELECT table_name
|
|
FROM information_schema.tables
|
|
WHERE table_schema = %s AND table_type = 'BASE TABLE';
|
|
""", [schema])
|
|
tables = [row['table_name'] for row in tables_result]
|
|
|
|
schema_info = {}
|
|
for table in tables:
|
|
columns_result = db.execute("""
|
|
SELECT column_name, data_type
|
|
FROM information_schema.columns
|
|
WHERE table_schema = %s AND table_name = %s
|
|
ORDER BY ordinal_position;
|
|
""", [schema, table])
|
|
columns = [(row['column_name'], row['data_type']) for row in columns_result]
|
|
|
|
primary_keys_result = db.execute("""
|
|
SELECT kcu.column_name
|
|
FROM information_schema.table_constraints tc
|
|
JOIN information_schema.key_column_usage kcu
|
|
ON tc.constraint_name = kcu.constraint_name AND tc.table_schema = kcu.table_schema
|
|
WHERE tc.constraint_type = 'PRIMARY KEY' AND tc.table_schema = %s AND tc.table_name = %s;
|
|
""", [schema, table])
|
|
primary_keys = [row['column_name'] for row in primary_keys_result]
|
|
|
|
foreign_keys_result = db.execute("""
|
|
SELECT kcu.column_name AS fk_column, ccu.table_name AS referenced_table, ccu.column_name AS referenced_column
|
|
FROM information_schema.table_constraints AS tc
|
|
JOIN information_schema.key_column_usage AS kcu
|
|
ON tc.constraint_name = kcu.constraint_name AND tc.table_schema = kcu.table_schema
|
|
JOIN information_schema.constraint_column_usage AS ccu
|
|
ON ccu.constraint_name = tc.constraint_name AND ccu.table_schema = tc.table_schema
|
|
WHERE tc.constraint_type = 'FOREIGN KEY' AND tc.table_schema = %s AND tc.table_name = %s;
|
|
""", [schema, table])
|
|
foreign_keys = [(row['fk_column'], row['referenced_table'], row['referenced_column']) for row in foreign_keys_result]
|
|
|
|
schema_info[table] = {
|
|
'columns': columns,
|
|
'primary_keys': primary_keys,
|
|
'foreign_keys': foreign_keys
|
|
}
|
|
return schema_info
|
|
|
|
def _map_data_type_for_sql(postgres_type):
|
|
"""Maps PostgreSQL types to standard SQL types (simplified)."""
|
|
return {
|
|
'character varying': 'VARCHAR', 'varchar': 'VARCHAR', 'text': 'TEXT',
|
|
'integer': 'INTEGER', 'bigint': 'BIGINT', 'boolean': 'BOOLEAN',
|
|
'timestamp without time zone': 'TIMESTAMP', 'timestamp with time zone': 'TIMESTAMPTZ',
|
|
'numeric': 'NUMERIC', 'real': 'REAL', 'date': 'DATE'
|
|
# Add more as needed
|
|
}.get(postgres_type, postgres_type.upper())
|
|
|
|
def _map_data_type(postgres_type):
|
|
"""Maps PostgreSQL types to Mermaid ER diagram types."""
|
|
type_mapping = {
|
|
'integer': 'int', 'bigint': 'int', 'smallint': 'int',
|
|
'character varying': 'string', 'varchar': 'string', 'text': 'string',
|
|
'date': 'date', 'timestamp without time zone': 'datetime',
|
|
'timestamp with time zone': 'datetime', 'boolean': 'bool',
|
|
'numeric': 'float', 'real': 'float'
|
|
}
|
|
return type_mapping.get(postgres_type, 'string')
|
|
|
|
def _generate_mermaid_er(schema_info):
|
|
"""Generates Mermaid ER diagram code from schema info."""
|
|
mermaid_lines = ["erDiagram"]
|
|
for table, info in schema_info.items():
|
|
mermaid_lines.append(f" {table} {{")
|
|
for column_name, data_type in info['columns']:
|
|
mermaid_data_type = _map_data_type(data_type)
|
|
pk_marker = " PK" if column_name in info.get('primary_keys', []) else ""
|
|
mermaid_lines.append(f" {mermaid_data_type} {column_name}{pk_marker}")
|
|
mermaid_lines.append(" }")
|
|
|
|
for table, info in schema_info.items():
|
|
for fk_column, referenced_table, referenced_column in info['foreign_keys']:
|
|
relation = f" {table} }}|--|| {referenced_table} : \"{fk_column} to {referenced_column}\""
|
|
mermaid_lines.append(relation)
|
|
return "\n".join(mermaid_lines)
|
|
|
|
def _generate_create_script(schema_info):
|
|
"""Generates SQL CREATE TABLE scripts from schema info."""
|
|
lines = []
|
|
for table, info in schema_info.items():
|
|
columns = info['columns']
|
|
pks = info.get('primary_keys', [])
|
|
fks = info['foreign_keys']
|
|
column_defs = []
|
|
for column_name, data_type in columns:
|
|
sql_type = _map_data_type_for_sql(data_type)
|
|
column_defs.append(f' "{column_name}" {sql_type}')
|
|
if pks:
|
|
pk_columns = ", ".join(f'"{pk}"' for pk in pks)
|
|
column_defs.append(f' PRIMARY KEY ({pk_columns})')
|
|
|
|
# Format column definitions with newlines before using in f-string
|
|
columns_sql = ",\n".join(column_defs)
|
|
create_stmt = f'CREATE TABLE "{table}" (\n{columns_sql}\n);'
|
|
lines.append(create_stmt)
|
|
|
|
for fk_column, ref_table, ref_col in fks:
|
|
alter_stmt = (
|
|
f'ALTER TABLE "{table}" ADD CONSTRAINT "fk_{table}_{fk_column}" '
|
|
f'FOREIGN KEY ("{fk_column}") REFERENCES "{ref_table}" ("{ref_col}");'
|
|
)
|
|
lines.append(alter_stmt)
|
|
lines.append("")
|
|
return "\n".join(lines)
|
|
|
|
def _execute_sql(query):
|
|
"""Executes arbitrary SQL query, returning results, columns, and error."""
|
|
results, columns, error = None, [], None
|
|
try:
|
|
results = db.execute(query) # Use the imported db object directly
|
|
if results:
|
|
columns = list(results[0].keys()) if isinstance(results, list) and results else []
|
|
except Exception as e:
|
|
error = str(e)
|
|
db.getDB().rollback() # Rollback on error
|
|
return (results, columns, error)
|
|
|
|
def _save_query(title, query):
|
|
"""Saves a query to the database."""
|
|
error = None
|
|
if not title: return "Must provide title"
|
|
try:
|
|
db.execute("INSERT INTO saved_query (title, query) VALUES (%s, %s)", [title, query], commit=True)
|
|
except Exception as e:
|
|
error = str(e)
|
|
db.getDB().rollback() # Rollback on error
|
|
return error
|
|
|
|
def _list_saved_queries():
|
|
"""Lists all saved queries."""
|
|
return db.execute("SELECT id, title, query FROM saved_query ORDER BY title")
|
|
|
|
def _get_saved_query(query_id):
|
|
"""Fetches a specific saved query."""
|
|
result = db.execute("SELECT title, query FROM saved_query WHERE id=%s", [query_id], one=True)
|
|
return (result['title'], result['query']) if result else (None, None)
|
|
|
|
def _delete_saved_query(query_id):
|
|
"""Deletes a saved query."""
|
|
db.execute("DELETE FROM saved_query WHERE id=%s", [query_id], commit=True)
|
|
|
|
|
|
# --- Routes ---
|
|
|
|
@sql_explorer_bp.route("/explorer", methods=['GET'])
|
|
def sql_explorer():
|
|
saved_queries = _list_saved_queries() # Use local helper
|
|
if htmx:
|
|
return render_block(current_app.jinja_env, 'sql_explorer.html', 'content', saved_queries=saved_queries)
|
|
return render_template('sql_explorer.html', saved_queries=saved_queries)
|
|
|
|
@sql_explorer_bp.route("/query", methods=['POST'])
|
|
def sql_query():
|
|
query = request.form.get('query')
|
|
title = request.form.get('title')
|
|
error = _save_query(title, query) # Use local helper
|
|
saved_queries = _list_saved_queries() # Use local helper
|
|
return render_template('partials/sql_explorer/sql_query.html',
|
|
title=title, query=query, error=error, saved_queries=saved_queries)
|
|
|
|
@sql_explorer_bp.route("/query/execute", methods=['POST'])
|
|
def execute_sql_query():
|
|
query = request.form.get('query')
|
|
(results, columns, error) = _execute_sql(query) # Use local helper
|
|
return render_template('partials/sql_explorer/results.html',
|
|
results=results, columns=columns, error=error)
|
|
|
|
@sql_explorer_bp.route('/load_query/<int:query_id>', methods=['GET'])
|
|
def load_sql_query(query_id):
|
|
(title, query) = _get_saved_query(query_id) # Use local helper
|
|
saved_queries = _list_saved_queries() # Use local helper
|
|
return render_template('partials/sql_explorer/sql_query.html',
|
|
title=title, query=query, saved_queries=saved_queries)
|
|
|
|
@sql_explorer_bp.route('/delete_query/<int:query_id>', methods=['DELETE'])
|
|
def delete_sql_query(query_id):
|
|
_delete_saved_query(query_id) # Use local helper
|
|
saved_queries = _list_saved_queries() # Use local helper
|
|
return render_template('partials/sql_explorer/sql_query.html',
|
|
title="", query="", saved_queries=saved_queries)
|
|
|
|
@sql_explorer_bp.route("/schema", methods=['GET'])
|
|
def sql_schema():
|
|
schema_info = _get_schema_info() # Use local helper
|
|
mermaid_code = _generate_mermaid_er(schema_info) # Use local helper
|
|
create_sql = _generate_create_script(schema_info) # Use local helper
|
|
return render_template('partials/sql_explorer/schema.html', mermaid_code=mermaid_code, create_sql=create_sql)
|
|
|
|
@sql_explorer_bp.route("/plot/<int:query_id>", methods=['GET'])
|
|
def plot_query(query_id):
|
|
(title, query) = _get_saved_query(query_id) # Use local helper
|
|
if not query: return "Query not found", 404
|
|
results_df = db.read_sql_as_df(query) # Keep using db.py for pandas interaction
|
|
plot_div = generate_plot(results_df, title)
|
|
return plot_div
|
|
|
|
@sql_explorer_bp.route("/plot/show", methods=['POST'])
|
|
def plot_unsaved_query():
|
|
query = request.form.get('query')
|
|
title = request.form.get('title')
|
|
results_df = db.read_sql_as_df(query) # Keep using db.py for pandas interaction
|
|
plot_div = generate_plot(results_df, title)
|
|
return plot_div |