442 lines
17 KiB
Python
442 lines
17 KiB
Python
import colorsys
|
|
from datetime import datetime, date, timedelta
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
def get_workouts(topsets):
|
|
# Ensure all entries have 'WorkoutId' and 'TopSetId', then sort by 'WorkoutId' and 'TopSetId'
|
|
filtered_topsets = sorted(
|
|
[t for t in topsets if t['WorkoutId'] is not None and t['TopSetId'] is not None],
|
|
key=lambda x: (x['WorkoutId'], x['TopSetId'])
|
|
)
|
|
|
|
workouts = {}
|
|
for t in filtered_topsets:
|
|
workout_id = t['WorkoutId']
|
|
if workout_id not in workouts:
|
|
workouts[workout_id] = {
|
|
'WorkoutId': workout_id,
|
|
'StartDate': t['StartDate'],
|
|
'TopSets': []
|
|
}
|
|
workouts[workout_id]['TopSets'].append({
|
|
'TopSetId': t['TopSetId'],
|
|
'ExerciseId': t['ExerciseId'],
|
|
'ExerciseName': t['ExerciseName'],
|
|
'Weight': t['Weight'],
|
|
'Repetitions': t['Repetitions'],
|
|
'Estimated1RM': t['Estimated1RM']
|
|
})
|
|
|
|
# Convert the workouts dictionary back to a list and sort by 'StartDate'
|
|
sorted_workouts = sorted(workouts.values(), key=lambda x: x['StartDate'], reverse=True)
|
|
|
|
return sorted_workouts
|
|
|
|
|
|
def get_all_exercises_from_topsets(topsets):
|
|
exercises_dict = {}
|
|
for t in topsets:
|
|
exercise_id = t.get('ExerciseId')
|
|
if exercise_id and exercise_id not in exercises_dict:
|
|
exercises_dict[exercise_id] = {
|
|
'ExerciseId': exercise_id,
|
|
'ExerciseName': t.get('ExerciseName', 'Unknown')
|
|
}
|
|
return list(exercises_dict.values())
|
|
|
|
def get_topsets_for_person(person_topsets):
|
|
# Group topsets by ExerciseId
|
|
grouped_topsets = {}
|
|
for topset in person_topsets:
|
|
exercise_id = topset['ExerciseId']
|
|
if exercise_id in grouped_topsets:
|
|
grouped_topsets[exercise_id].append(topset)
|
|
else:
|
|
grouped_topsets[exercise_id] = [topset]
|
|
|
|
# Process each group of topsets
|
|
exercises_topsets = []
|
|
for exercise_id, topsets in grouped_topsets.items():
|
|
# Sort topsets by StartDate in descending order
|
|
sorted_topsets = sorted(topsets, key=lambda x: x['StartDate'], reverse=True)
|
|
|
|
# Extracting values and calculating value ranges for SVG dimensions
|
|
estimated_1rm = [t['Estimated1RM'] for t in sorted_topsets]
|
|
repetitions = [t['Repetitions'] for t in sorted_topsets]
|
|
weight = [t['Weight'] for t in sorted_topsets]
|
|
start_dates = [t['StartDate'] for t in sorted_topsets]
|
|
messages = [f'{t["Repetitions"]} x {t["Weight"]}kg ({t["Estimated1RM"]}kg E1RM) on {t["StartDate"].strftime("%d %b %y")}' for t in sorted_topsets]
|
|
epoch = 'All'
|
|
person_id = sorted_topsets[0]['PersonId']
|
|
exercise_name = sorted_topsets[0]['ExerciseName']
|
|
|
|
if exercise_name and estimated_1rm and repetitions and weight and start_dates and messages:
|
|
exercise_progress = get_exercise_graph_model(exercise_name, estimated_1rm, repetitions, weight, start_dates, messages, epoch, person_id, exercise_id)
|
|
|
|
exercises_topsets.append({
|
|
'ExerciseId': exercise_id,
|
|
'ExerciseName': exercise_name,
|
|
'Topsets': sorted_topsets,
|
|
'ExerciseProgressGraph': exercise_progress
|
|
})
|
|
|
|
return exercises_topsets
|
|
|
|
def get_people_and_exercise_rep_maxes(topsets, selected_person_ids, selected_exercise_ids, min_date, max_date):
|
|
# Filter topsets once based on the criteria
|
|
filtered_topsets = [
|
|
t for t in topsets if t['PersonId'] in selected_person_ids
|
|
and t['ExerciseId'] in selected_exercise_ids
|
|
and min_date <= t['StartDate'] <= max_date
|
|
]
|
|
|
|
# Group the filtered topsets by PersonId
|
|
grouped_by_person = {}
|
|
for t in filtered_topsets:
|
|
person_id = t['PersonId']
|
|
if person_id in grouped_by_person:
|
|
grouped_by_person[person_id].append(t)
|
|
else:
|
|
grouped_by_person[person_id] = [t]
|
|
|
|
people = []
|
|
for person_id, person_topsets in grouped_by_person.items():
|
|
person_name = person_topsets[0]['PersonName']
|
|
workout_ids = {t['WorkoutId'] for t in person_topsets if t['WorkoutId']}
|
|
number_of_workouts = len(workout_ids)
|
|
|
|
people.append({
|
|
'PersonId': person_id,
|
|
'PersonName': person_name,
|
|
'NumberOfWorkouts': number_of_workouts,
|
|
'Exercises': get_topsets_for_person(person_topsets)
|
|
})
|
|
|
|
return {"People": people, "Stats": get_stats_from_topsets(topsets)}
|
|
|
|
|
|
|
|
def get_stats_from_topsets(topsets):
|
|
workout_count = len(set([t['WorkoutId']
|
|
for t in topsets if t['WorkoutId'] is not None]))
|
|
people_count = len(set([t['PersonId']
|
|
for t in topsets if t['PersonId'] is not None]))
|
|
workout_start_dates = [t['StartDate']
|
|
for t in topsets if t['StartDate'] is not None]
|
|
|
|
stats = [{"Text": "Total Workouts", "Value": workout_count},
|
|
{"Text": "Total Sets", "Value": len(topsets)}]
|
|
if people_count > 1:
|
|
stats.append({"Text": "People tracked", "Value": people_count})
|
|
if workout_count > 0:
|
|
first_workout_date = min(workout_start_dates)
|
|
last_workout_date = max(workout_start_dates)
|
|
|
|
stats.append({"Text": "Days Since First Workout", "Value": (
|
|
date.today() - first_workout_date).days})
|
|
if workout_count >= 2:
|
|
stats.append({"Text": "Days Since Last Workout",
|
|
"Value": (
|
|
date.today() - last_workout_date).days})
|
|
average_number_sets_per_workout = round(
|
|
len(topsets) / workout_count, 1)
|
|
stats.append({"Text": "Average sets per workout",
|
|
"Value": average_number_sets_per_workout})
|
|
|
|
training_duration = last_workout_date - first_workout_date
|
|
if training_duration > timedelta(days=0):
|
|
average_workouts_per_week = round(
|
|
workout_count / (training_duration.days / 7), 1)
|
|
stats.append({"Text": "Average Workouts Per Week",
|
|
"Value": average_workouts_per_week})
|
|
|
|
return stats
|
|
|
|
|
|
def convert_str_to_date(date_str, format='%Y-%m-%d'):
|
|
try:
|
|
return datetime.strptime(date_str, format).date()
|
|
except ValueError:
|
|
return None
|
|
except TypeError:
|
|
return None
|
|
|
|
|
|
def get_earliest_and_latest_workout_date(person):
|
|
workouts = person.get('Workouts', [])
|
|
if workouts:
|
|
# Initialize earliest and latest dates with the first workout's start date
|
|
earliest_date = latest_date = workouts[0]['StartDate']
|
|
for workout in workouts[1:]:
|
|
date = workout['StartDate']
|
|
if date < earliest_date:
|
|
earliest_date = date
|
|
if date > latest_date:
|
|
latest_date = date
|
|
return (earliest_date, latest_date)
|
|
|
|
# Return the current date for both if no workouts are present
|
|
current_date = datetime.now().date()
|
|
return (current_date, current_date)
|
|
|
|
|
|
def filter_workout_topsets(workout, selected_exercise_ids):
|
|
workout['TopSets'] = [topset for topset in workout['TopSets']
|
|
if topset['ExerciseId'] in selected_exercise_ids]
|
|
return workout
|
|
|
|
|
|
def flatten_list(list_of_lists):
|
|
return [item for sublist in list_of_lists for item in sublist]
|
|
|
|
|
|
def first_and_last_visible_days_in_month(first_day_of_month, last_day_of_month):
|
|
start = dict([(6, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)])
|
|
start_date = first_day_of_month - \
|
|
timedelta(days=start[first_day_of_month.weekday()])
|
|
|
|
end = dict([(6, 6), (0, 5), (1, 4), (2, 3), (3, 2), (4, 1), (5, 0)])
|
|
end_date = last_day_of_month + \
|
|
timedelta(days=end[last_day_of_month.weekday()])
|
|
return (start_date, end_date)
|
|
|
|
|
|
def flatten(lst):
|
|
"""
|
|
Flatten a list of lists.
|
|
"""
|
|
result = []
|
|
for item in lst:
|
|
if isinstance(item, list):
|
|
result.extend(flatten(item))
|
|
else:
|
|
result.append(item)
|
|
return result
|
|
|
|
def get_exercise_graph_model(title, estimated_1rm, repetitions, weight, start_dates, messages, epoch, person_id, exercise_id, min_date=None, max_date=None):
|
|
min_date, max_date = min(start_dates), max(start_dates)
|
|
min_e1rm, max_e1rm = min(estimated_1rm), max(estimated_1rm)
|
|
min_reps, max_reps = min(repetitions), max(repetitions)
|
|
min_weight, max_weight = min(weight), max(weight)
|
|
|
|
# Calculate viewBox dimensions
|
|
date_range = max_date - min_date
|
|
total_span = date_range.days or 1
|
|
e1rm_range = (max_e1rm - min_e1rm) or 1
|
|
reps_range = (max_reps - min_reps) or 1
|
|
weight_range = (max_weight - min_weight) or 1
|
|
vb_width, vb_height = total_span, e1rm_range
|
|
vb_width *= 200 / vb_width # Scale to 200px width
|
|
vb_height *= 75 / vb_height # Scale to 75px height
|
|
|
|
# Scale estimated_1rm values for SVG plotting
|
|
estimated_1rm_scaled = [((value - min_e1rm) / e1rm_range) * vb_height for value in estimated_1rm]
|
|
repetitions_scaled = [((value - min_reps) / reps_range) * vb_height for value in repetitions]
|
|
weight_scaled = [((value - min_weight) / weight_range) * vb_height for value in weight]
|
|
|
|
relative_positions = [(date - min_date).days / total_span for date in start_dates]
|
|
|
|
# Convert the slope from scaled units per day to kg per day
|
|
slope_kg_per_day = (max_e1rm - min_e1rm) / total_span
|
|
|
|
best_fit_formula = {
|
|
'kg_per_week': round(slope_kg_per_day * 7, 1), # Convert to kg/week
|
|
'kg_per_month': round(slope_kg_per_day * 30, 1) # Convert to kg/month
|
|
}
|
|
|
|
best_fit_points = []
|
|
|
|
# Catch LinAlgError
|
|
try:
|
|
# Convert relative positions and scaled estimated 1RM values to numpy arrays
|
|
x = np.array(relative_positions)
|
|
y = np.array(estimated_1rm_scaled)
|
|
|
|
# Calculate the slope (m) and y-intercept (b) of the line of best fit
|
|
m, b = np.polyfit(x, y, 1)
|
|
|
|
# Generate points along the line of best fit
|
|
y_best_fit = [m * xi + b for xi in x]
|
|
best_fit_points = list(zip(y_best_fit, relative_positions))
|
|
|
|
except:
|
|
pass
|
|
|
|
# Create messages and zip data for SVG plotting
|
|
estimated_1rm_points = zip(estimated_1rm_scaled, relative_positions)
|
|
repetitions_points = zip(repetitions_scaled, relative_positions)
|
|
weight_points = zip(weight_scaled, relative_positions)
|
|
|
|
repetitions = {
|
|
'label': 'Reps',
|
|
'color': '#388fed',
|
|
'points': list(repetitions_points)
|
|
}
|
|
weight = {
|
|
'label': 'Weight',
|
|
'color': '#bd3178',
|
|
'points': list(weight_points)
|
|
}
|
|
estimated_1rm = {
|
|
'label': 'E1RM',
|
|
'color': '#2ca02c',
|
|
'points': list(estimated_1rm_points)
|
|
}
|
|
|
|
plot_labels = zip(relative_positions, messages)
|
|
|
|
# Return exercise data with SVG dimensions and data points
|
|
return {
|
|
'title': title,
|
|
'vb_width': vb_width,
|
|
'vb_height': vb_height,
|
|
'plots': [repetitions, weight, estimated_1rm],
|
|
'best_fit_points': best_fit_points,
|
|
'best_fit_formula': best_fit_formula,
|
|
'plot_labels': plot_labels,
|
|
'epochs': ['Custom', '1M', '3M', '6M', 'All'],
|
|
'selected_epoch': epoch,
|
|
'person_id': person_id,
|
|
'exercise_id': exercise_id,
|
|
'min_date': min_date,
|
|
'max_date': max_date
|
|
}
|
|
|
|
def get_workout_counts(workouts, period='week'):
|
|
df = pd.DataFrame(workouts)
|
|
|
|
# Convert 'StartDate' to datetime and set period
|
|
df['StartDate'] = pd.to_datetime(df['StartDate'])
|
|
df['Period'] = df['StartDate'].dt.to_period('W' if period == 'week' else 'M')
|
|
|
|
# Group by PersonId, Period and count unique workouts
|
|
workout_counts = df.groupby(['PersonId', 'Period'])['WorkoutId'].nunique().reset_index()
|
|
|
|
# Convert 'Period' to timestamp using the start date of the period
|
|
workout_counts['Period'] = workout_counts['Period'].apply(lambda x: x.start_time)
|
|
|
|
# Pivot the result to get periods as columns
|
|
workout_counts_pivot = workout_counts.pivot(index='PersonId', columns='Period', values='WorkoutId').fillna(0)
|
|
|
|
# Include person names
|
|
names = df[['PersonId', 'PersonName']].drop_duplicates().set_index('PersonId')
|
|
workout_counts_final = names.join(workout_counts_pivot, how='left').fillna(0)
|
|
|
|
# Convert DataFrame to dictionary
|
|
result = workout_counts_final.reset_index().to_dict('records')
|
|
|
|
# Reformat the dictionary to desired structure
|
|
formatted_result = {}
|
|
for record in result:
|
|
person_id = record.pop('PersonId')
|
|
person_name = record.pop('PersonName')
|
|
pr_counts = {k: v for k, v in record.items()}
|
|
formatted_result[person_id] = {'PersonName': person_name, 'PRCounts': pr_counts}
|
|
|
|
return formatted_result
|
|
|
|
def count_prs_over_time(workouts, period='week'):
|
|
df = pd.DataFrame(workouts)
|
|
|
|
# Convert 'StartDate' to datetime
|
|
df['StartDate'] = pd.to_datetime(df['StartDate'])
|
|
|
|
# Set period as week or month
|
|
df['Period'] = df['StartDate'].dt.to_period('W' if period == 'week' else 'M')
|
|
|
|
# Group by Person, Exercise, and Period to find max Estimated1RM in each period
|
|
period_max = df.groupby(['PersonId', 'ExerciseId', 'Period'])['Estimated1RM'].max().reset_index()
|
|
|
|
# Determine all-time max Estimated1RM up to the start of each period
|
|
period_max['AllTimeMax'] = period_max.groupby(['PersonId', 'ExerciseId'])['Estimated1RM'].cummax().shift(1)
|
|
|
|
# Identify PRs as entries where the period's max Estimated1RM exceeds the all-time max
|
|
period_max['IsPR'] = period_max['Estimated1RM'] > period_max['AllTimeMax']
|
|
|
|
# Count PRs in each period for each person
|
|
pr_counts = period_max.groupby(['PersonId', 'Period'])['IsPR'].sum().reset_index()
|
|
|
|
# Convert 'Period' to timestamp using the start date of the period
|
|
pr_counts['Period'] = pr_counts['Period'].apply(lambda x: x.start_time)
|
|
|
|
# Pivot table to get the desired output format
|
|
output = pr_counts.pivot(index='PersonId', columns='Period', values='IsPR').fillna(0)
|
|
|
|
# Convert only the PR count columns to integers
|
|
for col in output.columns:
|
|
output[col] = output[col].astype(int)
|
|
|
|
# Merge with names and convert to desired format
|
|
names = df[['PersonId', 'PersonName']].drop_duplicates().set_index('PersonId')
|
|
output = names.join(output, how='left').fillna(0)
|
|
|
|
# Reset the index to bring 'PersonId' back as a column
|
|
output.reset_index(inplace=True)
|
|
|
|
# Convert to the final dictionary format with PRCounts nested
|
|
result = {}
|
|
for index, row in output.iterrows():
|
|
person_id = row['PersonId']
|
|
person_name = row['PersonName']
|
|
pr_counts = row.drop(['PersonId', 'PersonName']).to_dict()
|
|
result[person_id] = {"PersonName": person_name, "PRCounts": pr_counts}
|
|
|
|
return result
|
|
|
|
def get_weekly_pr_graph_model(title, weekly_pr_data):
|
|
# Assuming weekly_pr_data is in the format {1: {"PersonName": "Alice", "PRCounts": {Timestamp('2022-01-01', freq='W-MON'): 0, ...}}, 2: {...}, ...}
|
|
|
|
# Find the overall date range for all users
|
|
all_dates = [date for user_data in weekly_pr_data.values() for date in user_data["PRCounts"].keys()]
|
|
min_date, max_date = min(all_dates), max(all_dates)
|
|
total_span = (max_date - min_date).days or 1
|
|
relative_positions = [(date - min_date).days / total_span for date in all_dates]
|
|
|
|
# Calculate viewBox dimensions
|
|
max_value = max(max(user_data["PRCounts"].values()) for user_data in weekly_pr_data.values()) or 1
|
|
min_value = 0
|
|
value_range = max_value - min_value
|
|
vb_width = 200
|
|
vb_height= 75
|
|
|
|
plots = []
|
|
colors = get_distinct_colors(len(weekly_pr_data.items()))
|
|
for count, (user_id, user_data) in enumerate(weekly_pr_data.items()):
|
|
pr_counts = user_data["PRCounts"]
|
|
person_name = user_data["PersonName"]
|
|
|
|
values = pr_counts.values()
|
|
|
|
values_scaled = [((value - min_value) / value_range) * vb_height for value in values]
|
|
plot_points = list(zip(values_scaled, relative_positions))
|
|
messages = [f'{value} for {person_name} at {date.strftime("%d %b %y")}' for value, date in zip(values, pr_counts.keys())]
|
|
plot_labels = zip(values_scaled, relative_positions, messages)
|
|
|
|
# Create a plot for each user
|
|
plot = {
|
|
'label': person_name, # Use PersonName instead of User ID
|
|
'color': colors[count],
|
|
'points': plot_points,
|
|
'plot_labels': plot_labels
|
|
}
|
|
plots.append(plot)
|
|
|
|
# Return workout data with SVG dimensions and data points
|
|
return {
|
|
'title': title,
|
|
'vb_width': vb_width,
|
|
'vb_height': vb_height,
|
|
'plots': plots
|
|
}
|
|
|
|
def get_distinct_colors(n):
|
|
colors = []
|
|
for i in range(n):
|
|
# Divide the color wheel into n parts
|
|
hue = i / n
|
|
# Convert HSL (Hue, Saturation, Lightness) to RGB and then to a Hex string
|
|
rgb = colorsys.hls_to_rgb(hue, 0.6, 0.4) # Fixed lightness and saturation
|
|
hex_color = '#{:02x}{:02x}{:02x}'.format(int(rgb[0]*255), int(rgb[1]*255), int(rgb[2]*255))
|
|
colors.append(hex_color)
|
|
return colors |