Replaces the Plotly-based graph generation in the SQL Explorer with direct SVG rendering within an HTML template, similar to the exercise progress sparklines. - Modifies `routes/sql_explorer.py` endpoints (`plot_query`, `plot_unsaved_query`) to fetch raw data instead of using pandas/Plotly. - Adds `utils.prepare_svg_plot_data` to process raw SQL results, determine plot type (scatter, line, bar, table), normalize data, and prepare it for SVG. - Creates `templates/partials/sql_explorer/svg_plot.html` to render the SVG plot with axes, ticks, labels, and basic tooltips. - Removes the `generate_plot` function's usage for SQL Explorer and the direct dependency on Plotly for this feature.
370 lines
15 KiB
Python
370 lines
15 KiB
Python
import colorsys
|
|
from datetime import datetime, date, timedelta
|
|
import numpy as np
|
|
import pandas as pd
|
|
import plotly.express as px
|
|
import plotly.io as pio # Keep for now, might remove later if generate_plot is fully replaced
|
|
import math
|
|
from decimal import Decimal
|
|
|
|
def convert_str_to_date(date_str, format='%Y-%m-%d'):
|
|
try:
|
|
return datetime.strptime(date_str, format).date()
|
|
except ValueError:
|
|
return None
|
|
except TypeError:
|
|
return None
|
|
|
|
def get_exercise_graph_model(title, estimated_1rm, repetitions, weight, start_dates, messages, epoch, person_id, exercise_id, min_date=None, max_date=None, degree=1):
|
|
# Precompute ranges
|
|
min_date, max_date = min(start_dates), max(start_dates)
|
|
total_span = (max_date - min_date).days or 1
|
|
|
|
min_e1rm, max_e1rm = min(estimated_1rm), max(estimated_1rm)
|
|
min_reps, max_reps = min(repetitions), max(repetitions)
|
|
min_weight, max_weight = min(weight), max(weight)
|
|
|
|
e1rm_range = max_e1rm - min_e1rm or 1
|
|
reps_range = max_reps - min_reps or 1
|
|
weight_range = max_weight - min_weight or 1
|
|
|
|
# Calculate viewBox dimensions
|
|
vb_width, vb_height = total_span, e1rm_range
|
|
vb_width *= 200 / vb_width # Scale to 200px width
|
|
vb_height *= 75 / vb_height # Scale to 75px height
|
|
|
|
# Use NumPy arrays for efficient scaling
|
|
relative_positions = np.array([(date - min_date).days / total_span for date in start_dates])
|
|
estimated_1rm_scaled = ((np.array(estimated_1rm) - min_e1rm) / e1rm_range) * vb_height
|
|
repetitions_scaled = ((np.array(repetitions) - min_reps) / reps_range) * vb_height
|
|
weight_scaled = ((np.array(weight) - min_weight) / weight_range) * vb_height
|
|
|
|
# Calculate slope and line of best fit
|
|
slope_kg_per_day = e1rm_range / total_span
|
|
best_fit_formula = {
|
|
'kg_per_week': round(slope_kg_per_day * 7, 1),
|
|
'kg_per_month': round(slope_kg_per_day * 30, 1)
|
|
}
|
|
|
|
best_fit_points = []
|
|
try:
|
|
if len(relative_positions) > 1: # Ensure there are enough points for polyfit
|
|
# Fit a polynomial of the given degree
|
|
coeffs = np.polyfit(relative_positions, estimated_1rm_scaled, degree)
|
|
poly_fit = np.poly1d(coeffs)
|
|
y_best_fit = poly_fit(relative_positions)
|
|
best_fit_points = list(zip(y_best_fit.tolist(), relative_positions.tolist()))
|
|
else:
|
|
raise ValueError("Not enough data points for polyfit")
|
|
except (np.linalg.LinAlgError, ValueError) as e:
|
|
# Handle cases where polyfit fails
|
|
best_fit_points = []
|
|
m, b = 0, 0
|
|
|
|
# Prepare data for plots
|
|
repetitions_data = {
|
|
'label': 'Reps',
|
|
'color': '#388fed',
|
|
'points': list(zip(repetitions_scaled.tolist(), relative_positions.tolist()))
|
|
}
|
|
weight_data = {
|
|
'label': 'Weight',
|
|
'color': '#bd3178',
|
|
'points': list(zip(weight_scaled.tolist(), relative_positions.tolist()))
|
|
}
|
|
estimated_1rm_data = {
|
|
'label': 'E1RM',
|
|
'color': '#2ca02c',
|
|
'points': list(zip(estimated_1rm_scaled.tolist(), relative_positions.tolist()))
|
|
}
|
|
|
|
# Prepare plot labels
|
|
plot_labels = list(zip(relative_positions.tolist(), messages))
|
|
|
|
# Return exercise data with SVG dimensions and data points
|
|
return {
|
|
'title': title,
|
|
'vb_width': vb_width,
|
|
'vb_height': vb_height,
|
|
'plots': [repetitions_data, weight_data, estimated_1rm_data],
|
|
'best_fit_points': best_fit_points,
|
|
'best_fit_formula': best_fit_formula,
|
|
'plot_labels': plot_labels,
|
|
'epochs': ['Custom', '1M', '3M', '6M', 'All'],
|
|
'selected_epoch': epoch,
|
|
'person_id': person_id,
|
|
'exercise_id': exercise_id,
|
|
'min_date': min_date,
|
|
'max_date': max_date,
|
|
'degree': degree
|
|
}
|
|
|
|
def get_distinct_colors(n):
|
|
colors = []
|
|
for i in range(n):
|
|
# Divide the color wheel into n parts
|
|
hue = i / n
|
|
# Convert HSL (Hue, Saturation, Lightness) to RGB and then to a Hex string
|
|
rgb = colorsys.hls_to_rgb(hue, 0.6, 0.4) # Fixed lightness and saturation
|
|
hex_color = '#{:02x}{:02x}{:02x}'.format(int(rgb[0]*255), int(rgb[1]*255), int(rgb[2]*255))
|
|
colors.append(hex_color)
|
|
return colors
|
|
|
|
def generate_plot(df: pd.DataFrame, title: str) -> str:
|
|
"""
|
|
Analyzes the DataFrame and generates an appropriate Plotly visualization.
|
|
Returns the Plotly figure as a div string.
|
|
Optimized for speed.
|
|
"""
|
|
if df.empty:
|
|
return "<p>No data available to plot.</p>"
|
|
|
|
num_columns = len(df.columns)
|
|
|
|
# Dictionary-based lookup for faster decision-making
|
|
plot_funcs = {
|
|
1: lambda: px.histogram(df, x=df.columns[0], title=title)
|
|
if pd.api.types.is_numeric_dtype(df.iloc[:, 0]) else px.bar(df, x=df.columns[0], title=title),
|
|
|
|
2: lambda: px.scatter(df, x=df.columns[0], y=df.columns[1], title=title)
|
|
if pd.api.types.is_numeric_dtype(df.iloc[:, 0]) and pd.api.types.is_numeric_dtype(df.iloc[:, 1])
|
|
else px.bar(df, x=df.columns[0], y=df.columns[1], title=title)
|
|
}
|
|
|
|
# Select plot function based on column count
|
|
fig = plot_funcs.get(num_columns, lambda: px.imshow(df.corr(numeric_only=True), text_auto=True, title=title))()
|
|
|
|
# Use static rendering for speed
|
|
return pio.to_html(fig, full_html=False, include_plotlyjs=False, config={'staticPlot': True})
|
|
|
|
|
|
def calculate_estimated_1rm(weight, repetitions):
|
|
# Ensure the inputs are numeric
|
|
if repetitions == 0: # Avoid division by zero
|
|
return 0
|
|
estimated_1rm = round((100 * int(weight)) / (101.3 - 2.67123 * repetitions), 0)
|
|
return int(estimated_1rm)
|
|
|
|
|
|
def _is_numeric(val):
|
|
"""Check if a value is numeric (int, float, Decimal)."""
|
|
return isinstance(val, (int, float, Decimal))
|
|
|
|
def _is_datetime(val):
|
|
"""Check if a value is a date or datetime object."""
|
|
return isinstance(val, (date, datetime))
|
|
|
|
def _get_column_type(results, column_name):
|
|
"""Determine the effective type of a column (numeric, datetime, categorical)."""
|
|
numeric_count = 0
|
|
datetime_count = 0
|
|
total_count = 0
|
|
for row in results:
|
|
val = row.get(column_name)
|
|
if val is not None:
|
|
total_count += 1
|
|
if _is_numeric(val):
|
|
numeric_count += 1
|
|
elif _is_datetime(val):
|
|
datetime_count += 1
|
|
if total_count == 0: return 'categorical' # Default if all null or empty
|
|
if numeric_count / total_count > 0.8: return 'numeric' # Allow some non-numeric noise
|
|
if datetime_count / total_count > 0.8: return 'datetime'
|
|
return 'categorical'
|
|
|
|
def _normalize_value(value, min_val, range_val, target_max):
|
|
"""Normalize a value to a target range (e.g., SVG coordinate)."""
|
|
if range_val == 0: return target_max / 2 # Avoid division by zero, place in middle
|
|
return ((value - min_val) / range_val) * target_max
|
|
|
|
def prepare_svg_plot_data(results, columns, title):
|
|
"""
|
|
Prepares data from raw SQL results for SVG plotting.
|
|
Determines plot type and scales data.
|
|
"""
|
|
if not results:
|
|
raise ValueError("No data provided for plotting.")
|
|
|
|
num_columns = len(columns)
|
|
plot_type = 'table' # Default if no suitable plot found
|
|
plot_data = {}
|
|
x_col, y_col = None, None
|
|
x_type, y_type = None, None
|
|
|
|
# --- Determine Plot Type and Columns ---
|
|
if num_columns == 1:
|
|
x_col = columns[0]
|
|
x_type = _get_column_type(results, x_col)
|
|
if x_type == 'numeric':
|
|
plot_type = 'histogram'
|
|
else:
|
|
plot_type = 'bar_count' # Bar chart of value counts
|
|
|
|
elif num_columns >= 2:
|
|
# Prioritize common patterns
|
|
x_col, y_col = columns[0], columns[1]
|
|
x_type = _get_column_type(results, x_col)
|
|
y_type = _get_column_type(results, y_col)
|
|
|
|
if x_type == 'numeric' and y_type == 'numeric':
|
|
plot_type = 'scatter'
|
|
elif x_type == 'datetime' and y_type == 'numeric':
|
|
plot_type = 'line' # Treat datetime as numeric for position
|
|
elif x_type == 'categorical' and y_type == 'numeric':
|
|
plot_type = 'bar'
|
|
elif x_type == 'numeric' and y_type == 'categorical':
|
|
# Could do horizontal bar, but let's stick to vertical for now
|
|
plot_type = 'bar' # Treat numeric as category label, categorical as value (count?) - less common
|
|
# Or maybe swap? Let's assume categorical X, numeric Y is more likely intended
|
|
x_col, y_col = columns[1], columns[0] # Try swapping
|
|
x_type, y_type = y_type, x_type
|
|
if not (x_type == 'categorical' and y_type == 'numeric'):
|
|
plot_type = 'table' # Revert if swap didn't help
|
|
|
|
else: # Other combinations (datetime/cat, cat/cat, etc.) default to table
|
|
plot_type = 'table'
|
|
|
|
# --- Basic SVG Setup ---
|
|
vb_width = 500
|
|
vb_height = 300
|
|
margin = {'top': 20, 'right': 20, 'bottom': 50, 'left': 60} # Increased bottom/left for labels/axes
|
|
draw_width = vb_width - margin['left'] - margin['right']
|
|
draw_height = vb_height - margin['top'] - margin['bottom']
|
|
|
|
plot_data = {
|
|
'title': title,
|
|
'plot_type': plot_type,
|
|
'vb_width': vb_width,
|
|
'vb_height': vb_height,
|
|
'margin': margin,
|
|
'draw_width': draw_width,
|
|
'draw_height': draw_height,
|
|
'x_axis_label': x_col or '',
|
|
'y_axis_label': y_col or '',
|
|
'plots': [],
|
|
'x_ticks': [],
|
|
'y_ticks': [],
|
|
'original_results': results, # Keep original for table fallback
|
|
'original_columns': columns
|
|
}
|
|
|
|
if plot_type == 'table':
|
|
return plot_data # No further processing needed for table fallback
|
|
|
|
# --- Data Extraction and Scaling (Specific to Plot Type) ---
|
|
points = []
|
|
x_values_raw = []
|
|
y_values_raw = []
|
|
|
|
# Extract relevant data, handling potential type issues
|
|
for row in results:
|
|
x_val_raw = row.get(x_col)
|
|
y_val_raw = row.get(y_col)
|
|
|
|
# Convert datetimes to numeric representation (e.g., days since min date)
|
|
if x_type == 'datetime':
|
|
x_values_raw.append(x_val_raw) # Keep original dates for range calculation
|
|
elif _is_numeric(x_val_raw):
|
|
x_values_raw.append(float(x_val_raw)) # Convert Decimal to float
|
|
# Add handling for categorical X if needed (e.g., bar chart)
|
|
|
|
if y_type == 'numeric':
|
|
if _is_numeric(y_val_raw):
|
|
y_values_raw.append(float(y_val_raw))
|
|
else:
|
|
y_values_raw.append(None) # Mark non-numeric Y as None
|
|
# Add handling for categorical Y if needed
|
|
|
|
if not x_values_raw or not y_values_raw:
|
|
plot_data['plot_type'] = 'table' # Fallback if essential data is missing
|
|
return plot_data
|
|
|
|
# Calculate ranges (handle datetime separately)
|
|
if x_type == 'datetime':
|
|
valid_dates = [d for d in x_values_raw if d is not None]
|
|
if not valid_dates:
|
|
plot_data['plot_type'] = 'table'; return plot_data
|
|
min_x_dt, max_x_dt = min(valid_dates), max(valid_dates)
|
|
# Convert dates to days since min_date for numerical scaling
|
|
total_days = (max_x_dt - min_x_dt).days
|
|
x_values_numeric = [(d - min_x_dt).days if d is not None else None for d in x_values_raw]
|
|
min_x, max_x = 0, total_days
|
|
else: # Numeric or Categorical (treat categorical index as numeric for now)
|
|
valid_x = [x for x in x_values_raw if x is not None]
|
|
if not valid_x:
|
|
plot_data['plot_type'] = 'table'; return plot_data
|
|
min_x, max_x = min(valid_x), max(valid_x)
|
|
x_values_numeric = x_values_raw # Already numeric (or will be treated as such)
|
|
|
|
valid_y = [y for y in y_values_raw if y is not None]
|
|
if not valid_y:
|
|
plot_data['plot_type'] = 'table'; return plot_data
|
|
min_y, max_y = min(valid_y), max(valid_y)
|
|
|
|
range_x = max_x - min_x
|
|
range_y = max_y - min_y
|
|
|
|
# Scale points
|
|
for i, row in enumerate(results):
|
|
x_num = x_values_numeric[i]
|
|
y_num = y_values_raw[i] # Use original list which might have None
|
|
|
|
if x_num is None or y_num is None: continue # Skip points with missing essential data
|
|
|
|
# Scale X to drawing width, Y to drawing height (inverted Y for SVG)
|
|
scaled_x = margin['left'] + _normalize_value(x_num, min_x, range_x, draw_width)
|
|
scaled_y = margin['top'] + draw_height - _normalize_value(y_num, min_y, range_y, draw_height)
|
|
|
|
points.append({
|
|
'x': scaled_x,
|
|
'y': scaled_y,
|
|
'original': row # Store original row data for tooltips
|
|
})
|
|
|
|
# --- Generate Ticks ---
|
|
num_ticks = 5 # Desired number of ticks
|
|
# X Ticks
|
|
x_ticks = []
|
|
if range_x >= 0:
|
|
step_x = (max_x - min_x) / (num_ticks -1) if num_ticks > 1 and range_x > 0 else 0
|
|
for i in range(num_ticks):
|
|
tick_val_raw = min_x + i * step_x
|
|
tick_pos = margin['left'] + _normalize_value(tick_val_raw, min_x, range_x, draw_width)
|
|
label = ""
|
|
if x_type == 'datetime':
|
|
tick_date = min_x_dt + timedelta(days=tick_val_raw)
|
|
label = tick_date.strftime('%Y-%m-%d') # Format date label
|
|
else: # Numeric
|
|
label = f"{tick_val_raw:.1f}" if isinstance(tick_val_raw, float) else str(tick_val_raw)
|
|
|
|
x_ticks.append({'value': tick_val_raw, 'label': label, 'position': tick_pos})
|
|
|
|
# Y Ticks
|
|
y_ticks = []
|
|
if range_y >= 0:
|
|
step_y = (max_y - min_y) / (num_ticks - 1) if num_ticks > 1 and range_y > 0 else 0
|
|
for i in range(num_ticks):
|
|
tick_val = min_y + i * step_y
|
|
tick_pos = margin['top'] + draw_height - _normalize_value(tick_val, min_y, range_y, draw_height)
|
|
label = f"{tick_val:.1f}" if isinstance(tick_val, float) else str(tick_val)
|
|
y_ticks.append({'value': tick_val, 'label': label, 'position': tick_pos})
|
|
|
|
|
|
# --- Finalize Plot Data ---
|
|
# For now, put all points into one series
|
|
plot_data['plots'].append({
|
|
'label': f'{y_col} vs {x_col}',
|
|
'color': '#388fed', # Default color
|
|
'points': points
|
|
})
|
|
plot_data['x_ticks'] = x_ticks
|
|
plot_data['y_ticks'] = y_ticks
|
|
|
|
# Add specific adjustments for plot types if needed (e.g., bar width)
|
|
if plot_type == 'bar':
|
|
# Calculate bar width based on number of bars/categories
|
|
# This needs more refinement based on how categorical X is handled
|
|
plot_data['bar_width'] = draw_width / len(points) * 0.8 if points else 10
|
|
|
|
|
|
return plot_data |