import colorsys from datetime import datetime, date, timedelta import random import numpy as np import pandas as pd def get_workouts(topsets): # Get all unique workout_ids (No duplicates) workout_ids = list(set([t['WorkoutId'] for t in topsets if t['WorkoutId'] is not None])) # Group topsets into workouts workouts = [] for workout_id in reversed(workout_ids): topsets_in_workout = [ t for t in topsets if t['WorkoutId'] == workout_id] workouts.append({ 'WorkoutId': workout_id, 'StartDate': topsets_in_workout[0]['StartDate'], 'TopSets': [{"TopSetId": t['TopSetId'], "ExerciseId": t['ExerciseId'], "ExerciseName": t['ExerciseName'], "Weight": t['Weight'], "Repetitions": t['Repetitions'], "Estimated1RM": t['Estimated1RM']} for t in topsets_in_workout if t['TopSetId'] is not None] }) workouts.sort(key=lambda x: x['StartDate'], reverse=True) return workouts def get_all_exercises_from_topsets(topsets): exercise_ids = set([t['ExerciseId'] for t in topsets if t['ExerciseId'] is not None]) exercises = [] for exercise_id in exercise_ids: exercises.append({ 'ExerciseId': exercise_id, 'ExerciseName': next((t['ExerciseName'] for t in topsets if t['ExerciseId'] == exercise_id), 'Unknown') }) return exercises def get_topsets_for_person(person_topsets): person_exercises = get_all_exercises_from_topsets(person_topsets) exercises_topsets = [] for e in person_exercises: exercise_topsets = [t for t in person_topsets if t['ExerciseId'] == e['ExerciseId']] # Sort topsets by StartDate in descending order sorted_topsets = sorted(exercise_topsets, key=lambda x: x['StartDate'], reverse=True) # Extracting values and calculating value ranges for SVG dimensions estimated_1rm = [t['Estimated1RM'] for t in exercise_topsets] repetitions = [t['Repetitions'] for t in exercise_topsets] weight = [t['Weight'] for t in exercise_topsets] start_dates = [t['StartDate'] for t in exercise_topsets] messages = [f'{t["Repetitions"]} x {t["Weight"]}kg ({t["Estimated1RM"]}kg E1RM) on {t["StartDate"].strftime("%d %b %y")}' for t in exercise_topsets] exercise_progress = get_exercise_graph_model(exercise_topsets[0]['ExerciseName'], estimated_1rm, repetitions, weight, start_dates, messages) exercises_topsets.append({ 'ExerciseId': e['ExerciseId'], 'ExerciseName': e['ExerciseName'], 'Topsets': sorted_topsets, 'ExerciseProgressGraph': exercise_progress }) return exercises_topsets def get_people_and_exercise_rep_maxes(topsets, selected_person_ids, selected_exercise_ids, min_date, max_date): # Get all unique workout_ids (No duplicates) people_ids = set([t['PersonId'] for t in topsets]) filtered_people_ids = [p for p in people_ids if p in selected_person_ids] # Group topsets into workouts people = [] for person_id in filtered_people_ids: workouts_for_person = [ t for t in topsets if t['PersonId'] == person_id and t['ExerciseId'] in selected_exercise_ids and t['StartDate'] >= min_date and t['StartDate'] <= max_date] if workouts_for_person: people.append({ 'PersonId': person_id, 'PersonName': workouts_for_person[0]['PersonName'], 'NumberOfWorkouts': len(list(set([t['WorkoutId'] for t in workouts_for_person if t['WorkoutId'] is not None]))), 'Exercises': get_topsets_for_person(workouts_for_person) }) return {"People": people, "Stats": get_stats_from_topsets(topsets)} def get_stats_from_topsets(topsets): workout_count = len(set([t['WorkoutId'] for t in topsets if t['WorkoutId'] is not None])) people_count = len(set([t['PersonId'] for t in topsets if t['PersonId'] is not None])) workout_start_dates = [t['StartDate'] for t in topsets if t['StartDate'] is not None] stats = [{"Text": "Total Workouts", "Value": workout_count}, {"Text": "Total Sets", "Value": len(topsets)}] if people_count > 1: stats.append({"Text": "People tracked", "Value": people_count}) if workout_count > 0: first_workout_date = min(workout_start_dates) last_workout_date = max(workout_start_dates) stats.append({"Text": "Days Since First Workout", "Value": ( date.today() - first_workout_date).days}) if workout_count >= 2: stats.append({"Text": "Days Since Last Workout", "Value": ( date.today() - last_workout_date).days}) average_number_sets_per_workout = round( len(topsets) / workout_count, 1) stats.append({"Text": "Average sets per workout", "Value": average_number_sets_per_workout}) training_duration = last_workout_date - first_workout_date if training_duration > timedelta(days=0): average_workouts_per_week = round( workout_count / (training_duration.days / 7), 1) stats.append({"Text": "Average Workouts Per Week", "Value": average_workouts_per_week}) return stats def convert_str_to_date(date_str, format='%Y-%m-%d'): try: return datetime.strptime(date_str, format).date() except ValueError: return None except TypeError: return None def get_earliest_and_latest_workout_date(person): if len(person['Workouts']) > 0: return (min(person['Workouts'], key=lambda x: x['StartDate'])['StartDate'], max(person['Workouts'], key=lambda x: x['StartDate'])['StartDate']) return (datetime.now().date(), datetime.now().date()) def filter_workout_topsets(workout, selected_exercise_ids): workout['TopSets'] = [topset for topset in workout['TopSets'] if topset['ExerciseId'] in selected_exercise_ids] return workout def get_exercise_ids_from_workouts(workouts): return list(set(flatten_list(list(map(lambda x: list( map(lambda y: y['ExerciseId'], x['TopSets'])), workouts))))) def flatten_list(list_of_lists): return [item for sublist in list_of_lists for item in sublist] def first_and_last_visible_days_in_month(first_day_of_month, last_day_of_month): start = dict([(6, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]) start_date = first_day_of_month - \ timedelta(days=start[first_day_of_month.weekday()]) end = dict([(6, 6), (0, 5), (1, 4), (2, 3), (3, 2), (4, 1), (5, 0)]) end_date = last_day_of_month + \ timedelta(days=end[last_day_of_month.weekday()]) return (start_date, end_date) def flatten(lst): """ Flatten a list of lists. """ result = [] for item in lst: if isinstance(item, list): result.extend(flatten(item)) else: result.append(item) return result def get_date_info(input_date, selected_view): if selected_view not in ['month', 'year']: raise ValueError( 'selected_view must be either "month" or "year"') # First day of the month first_day_of_month = input_date.replace(day=1) # Last day of the month if input_date.month == 12: last_day_of_month = input_date.replace( year=input_date.year+1, month=1, day=1) - timedelta(days=1) else: last_day_of_month = input_date.replace( month=input_date.month+1, day=1) - timedelta(days=1) # First and last day of the year first_day_of_year = input_date.replace(month=1, day=1) last_day_of_year = input_date.replace( year=input_date.year+1, month=1, day=1) - timedelta(days=1) # Next/previous month year, month = divmod(input_date.year * 12 + input_date.month, 12) next_month = date(year, month + 1, 1) prev_month_last_day = first_day_of_month - timedelta(days=1) prev_month = prev_month_last_day.replace(day=1) # Next/previous year next_year = input_date.replace(year=input_date.year+1) prev_year = input_date.replace(year=input_date.year-1) # Business logic, should move above to a separate function if selected_view == 'month': # Step 1: Find the first Sunday before or on the first day of the month days_to_subtract = (first_day_of_month.weekday() + 1) % 7 start_date = first_day_of_month - timedelta(days=days_to_subtract) # Step 2: Calculate the last day to display, based on the number of weeks end_date = start_date + timedelta(days=6 * 7 - 1) return { 'next_date': next_month, 'previous_date': prev_month, 'first_date_of_view': first_day_of_month, 'last_date_of_view': last_day_of_month, 'start_date': start_date, 'end_date': end_date, } elif selected_view == 'year': return { 'next_date': next_year, 'previous_date': prev_year, 'first_date_of_view': first_day_of_year, 'last_date_of_view': last_day_of_year, 'start_date': first_day_of_year, 'end_date': last_day_of_year, } def get_exercise_graph_model(title, estimated_1rm, repetitions, weight, start_dates, messages): min_date, max_date = min(start_dates), max(start_dates) min_e1rm, max_e1rm = min(estimated_1rm), max(estimated_1rm) min_reps, max_reps = min(repetitions), max(repetitions) min_weight, max_weight = min(weight), max(weight) # Calculate viewBox dimensions date_range = max_date - min_date total_span = date_range.days or 1 e1rm_range = (max_e1rm - min_e1rm) or 1 reps_range = (max_reps - min_reps) or 1 weight_range = (max_weight - min_weight) or 1 vb_width, vb_height = total_span, e1rm_range vb_width *= 200 / vb_width # Scale to 200px width vb_height *= 75 / vb_height # Scale to 75px height # Scale estimated_1rm values for SVG plotting estimated_1rm_scaled = [((value - min_e1rm) / e1rm_range) * vb_height for value in estimated_1rm] repetitions_scaled = [((value - min_reps) / reps_range) * vb_height for value in repetitions] weight_scaled = [((value - min_weight) / weight_range) * vb_height for value in weight] relative_positions = [(date - min_date).days / total_span for date in start_dates] best_fit_points = [] # trry catch LinAlgError try: # Convert relative positions and scaled estimated 1RM values to numpy arrays x = np.array(relative_positions) y = np.array(estimated_1rm_scaled) # Calculate the slope (m) and y-intercept (b) of the line of best fit m, b = np.polyfit(x, y, 1) # Generate points along the line of best fit y_best_fit = [m * xi + b for xi in x] best_fit_points = list(zip(y_best_fit, relative_positions)) except: pass # Create messages and zip data for SVG plotting estimated_1rm_points = zip(estimated_1rm_scaled, relative_positions) repetitions_points = zip(repetitions_scaled, relative_positions) weight_points = zip(weight_scaled, relative_positions) repetitions = { 'label': 'Reps', 'color': '#388fed', 'points': list(repetitions_points) } weight = { 'label': 'Weight', 'color': '#bd3178', 'points': list(weight_points) } estimated_1rm = { 'label': 'E1RM', 'color': '#2ca02c', 'points': list(estimated_1rm_points) } plot_labels = zip(relative_positions, messages) # Return exercise data with SVG dimensions and data points return { 'title': title, 'vb_width': vb_width, 'vb_height': vb_height, 'plots': [repetitions, weight, estimated_1rm], 'best_fit_points': best_fit_points, 'plot_labels': plot_labels } def get_workout_counts(workouts, period='week'): # Convert to DataFrame df = pd.DataFrame(workouts) # Convert 'StartDate' to datetime df['StartDate'] = pd.to_datetime(df['StartDate']) # Determine the range of periods to cover min_date = df['StartDate'].min() max_date = pd.Timestamp(datetime.now()) # Generate a complete range of periods freq = 'W-MON' if period == 'week' else 'MS' period_range = pd.date_range(start=min_date, end=max_date, freq=freq) # Initialize a dictionary to store workout counts and person names workout_counts = { person_id: { "PersonName": person_name, "PRCounts": {p: 0 for p in period_range} } for person_id, person_name in df[['PersonId', 'PersonName']].drop_duplicates().values } # Process the workouts for person_id, person_data in workout_counts.items(): person_df = df[df['PersonId'] == person_id] for period_start in person_data["PRCounts"]: period_end = period_start + pd.DateOffset(weeks=1) if period == 'week' else period_start + pd.DateOffset(months=1) period_workouts = person_df[(person_df['StartDate'] >= period_start) & (person_df['StartDate'] < period_end)] person_data["PRCounts"][period_start] = len(period_workouts) return workout_counts def count_prs_over_time(workouts, period='week'): # Convert to DataFrame df = pd.DataFrame(workouts) # Convert 'StartDate' to datetime df['StartDate'] = pd.to_datetime(df['StartDate']) # Determine the range of periods to cover min_date = df['StartDate'].min() max_date = pd.Timestamp(datetime.now()) # Generate a complete range of periods period_range = pd.date_range(start=min_date, end=max_date, freq='W-MON' if period == 'week' else 'MS') # Initialize a dictionary to store PR counts and names pr_counts = { person_id: { "PersonName": person_name, "PRCounts": {p: 0 for p in period_range} } for person_id, person_name in df[['PersonId', 'PersonName']].drop_duplicates().values } # Process the workouts for person_id, person_data in pr_counts.items(): person_df = df[df['PersonId'] == person_id] for period_start in person_data["PRCounts"]: period_end = period_start + pd.DateOffset(weeks=1) if period == 'week' else period_start + pd.DateOffset(months=1) period_workouts = person_df[(person_df['StartDate'] >= period_start) & (person_df['StartDate'] < period_end)] for exercise_id in period_workouts['ExerciseId'].unique(): exercise_max = period_workouts[period_workouts['ExerciseId'] == exercise_id]['Estimated1RM'].max() # Check if this is a PR previous_max = person_df[(person_df['StartDate'] < period_start) & (person_df['ExerciseId'] == exercise_id)]['Estimated1RM'].max() if pd.isna(previous_max) or exercise_max > previous_max: person_data["PRCounts"][period_start] += 1 return pr_counts def get_weekly_pr_graph_model(title, weekly_pr_data): # Assuming weekly_pr_data is in the format {1: {"PersonName": "Alice", "PRCounts": {Timestamp('2022-01-01', freq='W-MON'): 0, ...}}, 2: {...}, ...} # Find the overall date range for all users all_dates = [date for user_data in weekly_pr_data.values() for date in user_data["PRCounts"].keys()] min_date, max_date = min(all_dates), max(all_dates) total_span = (max_date - min_date).days or 1 relative_positions = [(date - min_date).days / total_span for date in all_dates] # Calculate viewBox dimensions max_pr_count = max(max(user_data["PRCounts"].values()) for user_data in weekly_pr_data.values()) or 1 vb_width, vb_height = total_span, max_pr_count vb_width *= 200 / vb_width # Scale to 200px width vb_height *= 75 / vb_height # Scale to 75px height plots = [] colors = get_distinct_colors(len(weekly_pr_data.items())) for count, (user_id, user_data) in enumerate(weekly_pr_data.items()): pr_counts = user_data["PRCounts"] person_name = user_data["PersonName"] values = pr_counts.values() min_value, max_value = min(values), max(values) value_range = (max_value - min_value) or 1 values_scaled = [((value - min_value) / value_range) * vb_height for value in values] plot_points = list(zip(values_scaled, relative_positions)) # Create a plot for each user plot = { 'label': person_name, # Use PersonName instead of User ID 'color': colors[count], 'points': plot_points } plots.append(plot) # Return workout data with SVG dimensions and data points return { 'title': title, 'vb_width': vb_width, 'vb_height': vb_height, 'plots': plots } def get_distinct_colors(n): colors = [] for i in range(n): # Divide the color wheel into n parts hue = i / n # Convert HSL (Hue, Saturation, Lightness) to RGB and then to a Hex string rgb = colorsys.hls_to_rgb(hue, 0.6, 0.4) # Fixed lightness and saturation hex_color = '#{:02x}{:02x}{:02x}'.format(int(rgb[0]*255), int(rgb[1]*255), int(rgb[2]*255)) colors.append(hex_color) return colors