refactor(sql_explorer): Replace Plotly with SVG rendering for plots
Replaces the Plotly-based graph generation in the SQL Explorer with direct SVG rendering within an HTML template, similar to the exercise progress sparklines. - Modifies `routes/sql_explorer.py` endpoints (`plot_query`, `plot_unsaved_query`) to fetch raw data instead of using pandas/Plotly. - Adds `utils.prepare_svg_plot_data` to process raw SQL results, determine plot type (scatter, line, bar, table), normalize data, and prepare it for SVG. - Creates `templates/partials/sql_explorer/svg_plot.html` to render the SVG plot with axes, ticks, labels, and basic tooltips. - Removes the `generate_plot` function's usage for SQL Explorer and the direct dependency on Plotly for this feature.
This commit is contained in:
230
utils.py
230
utils.py
@@ -3,7 +3,9 @@ from datetime import datetime, date, timedelta
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import plotly.express as px
|
||||
import plotly.io as pio
|
||||
import plotly.io as pio # Keep for now, might remove later if generate_plot is fully replaced
|
||||
import math
|
||||
from decimal import Decimal
|
||||
|
||||
def convert_str_to_date(date_str, format='%Y-%m-%d'):
|
||||
try:
|
||||
@@ -141,4 +143,228 @@ def calculate_estimated_1rm(weight, repetitions):
|
||||
if repetitions == 0: # Avoid division by zero
|
||||
return 0
|
||||
estimated_1rm = round((100 * int(weight)) / (101.3 - 2.67123 * repetitions), 0)
|
||||
return int(estimated_1rm)
|
||||
return int(estimated_1rm)
|
||||
|
||||
|
||||
def _is_numeric(val):
|
||||
"""Check if a value is numeric (int, float, Decimal)."""
|
||||
return isinstance(val, (int, float, Decimal))
|
||||
|
||||
def _is_datetime(val):
|
||||
"""Check if a value is a date or datetime object."""
|
||||
return isinstance(val, (date, datetime))
|
||||
|
||||
def _get_column_type(results, column_name):
|
||||
"""Determine the effective type of a column (numeric, datetime, categorical)."""
|
||||
numeric_count = 0
|
||||
datetime_count = 0
|
||||
total_count = 0
|
||||
for row in results:
|
||||
val = row.get(column_name)
|
||||
if val is not None:
|
||||
total_count += 1
|
||||
if _is_numeric(val):
|
||||
numeric_count += 1
|
||||
elif _is_datetime(val):
|
||||
datetime_count += 1
|
||||
if total_count == 0: return 'categorical' # Default if all null or empty
|
||||
if numeric_count / total_count > 0.8: return 'numeric' # Allow some non-numeric noise
|
||||
if datetime_count / total_count > 0.8: return 'datetime'
|
||||
return 'categorical'
|
||||
|
||||
def _normalize_value(value, min_val, range_val, target_max):
|
||||
"""Normalize a value to a target range (e.g., SVG coordinate)."""
|
||||
if range_val == 0: return target_max / 2 # Avoid division by zero, place in middle
|
||||
return ((value - min_val) / range_val) * target_max
|
||||
|
||||
def prepare_svg_plot_data(results, columns, title):
|
||||
"""
|
||||
Prepares data from raw SQL results for SVG plotting.
|
||||
Determines plot type and scales data.
|
||||
"""
|
||||
if not results:
|
||||
raise ValueError("No data provided for plotting.")
|
||||
|
||||
num_columns = len(columns)
|
||||
plot_type = 'table' # Default if no suitable plot found
|
||||
plot_data = {}
|
||||
x_col, y_col = None, None
|
||||
x_type, y_type = None, None
|
||||
|
||||
# --- Determine Plot Type and Columns ---
|
||||
if num_columns == 1:
|
||||
x_col = columns[0]
|
||||
x_type = _get_column_type(results, x_col)
|
||||
if x_type == 'numeric':
|
||||
plot_type = 'histogram'
|
||||
else:
|
||||
plot_type = 'bar_count' # Bar chart of value counts
|
||||
|
||||
elif num_columns >= 2:
|
||||
# Prioritize common patterns
|
||||
x_col, y_col = columns[0], columns[1]
|
||||
x_type = _get_column_type(results, x_col)
|
||||
y_type = _get_column_type(results, y_col)
|
||||
|
||||
if x_type == 'numeric' and y_type == 'numeric':
|
||||
plot_type = 'scatter'
|
||||
elif x_type == 'datetime' and y_type == 'numeric':
|
||||
plot_type = 'line' # Treat datetime as numeric for position
|
||||
elif x_type == 'categorical' and y_type == 'numeric':
|
||||
plot_type = 'bar'
|
||||
elif x_type == 'numeric' and y_type == 'categorical':
|
||||
# Could do horizontal bar, but let's stick to vertical for now
|
||||
plot_type = 'bar' # Treat numeric as category label, categorical as value (count?) - less common
|
||||
# Or maybe swap? Let's assume categorical X, numeric Y is more likely intended
|
||||
x_col, y_col = columns[1], columns[0] # Try swapping
|
||||
x_type, y_type = y_type, x_type
|
||||
if not (x_type == 'categorical' and y_type == 'numeric'):
|
||||
plot_type = 'table' # Revert if swap didn't help
|
||||
|
||||
else: # Other combinations (datetime/cat, cat/cat, etc.) default to table
|
||||
plot_type = 'table'
|
||||
|
||||
# --- Basic SVG Setup ---
|
||||
vb_width = 500
|
||||
vb_height = 300
|
||||
margin = {'top': 20, 'right': 20, 'bottom': 50, 'left': 60} # Increased bottom/left for labels/axes
|
||||
draw_width = vb_width - margin['left'] - margin['right']
|
||||
draw_height = vb_height - margin['top'] - margin['bottom']
|
||||
|
||||
plot_data = {
|
||||
'title': title,
|
||||
'plot_type': plot_type,
|
||||
'vb_width': vb_width,
|
||||
'vb_height': vb_height,
|
||||
'margin': margin,
|
||||
'draw_width': draw_width,
|
||||
'draw_height': draw_height,
|
||||
'x_axis_label': x_col or '',
|
||||
'y_axis_label': y_col or '',
|
||||
'plots': [],
|
||||
'x_ticks': [],
|
||||
'y_ticks': [],
|
||||
'original_results': results, # Keep original for table fallback
|
||||
'original_columns': columns
|
||||
}
|
||||
|
||||
if plot_type == 'table':
|
||||
return plot_data # No further processing needed for table fallback
|
||||
|
||||
# --- Data Extraction and Scaling (Specific to Plot Type) ---
|
||||
points = []
|
||||
x_values_raw = []
|
||||
y_values_raw = []
|
||||
|
||||
# Extract relevant data, handling potential type issues
|
||||
for row in results:
|
||||
x_val_raw = row.get(x_col)
|
||||
y_val_raw = row.get(y_col)
|
||||
|
||||
# Convert datetimes to numeric representation (e.g., days since min date)
|
||||
if x_type == 'datetime':
|
||||
x_values_raw.append(x_val_raw) # Keep original dates for range calculation
|
||||
elif _is_numeric(x_val_raw):
|
||||
x_values_raw.append(float(x_val_raw)) # Convert Decimal to float
|
||||
# Add handling for categorical X if needed (e.g., bar chart)
|
||||
|
||||
if y_type == 'numeric':
|
||||
if _is_numeric(y_val_raw):
|
||||
y_values_raw.append(float(y_val_raw))
|
||||
else:
|
||||
y_values_raw.append(None) # Mark non-numeric Y as None
|
||||
# Add handling for categorical Y if needed
|
||||
|
||||
if not x_values_raw or not y_values_raw:
|
||||
plot_data['plot_type'] = 'table' # Fallback if essential data is missing
|
||||
return plot_data
|
||||
|
||||
# Calculate ranges (handle datetime separately)
|
||||
if x_type == 'datetime':
|
||||
valid_dates = [d for d in x_values_raw if d is not None]
|
||||
if not valid_dates:
|
||||
plot_data['plot_type'] = 'table'; return plot_data
|
||||
min_x_dt, max_x_dt = min(valid_dates), max(valid_dates)
|
||||
# Convert dates to days since min_date for numerical scaling
|
||||
total_days = (max_x_dt - min_x_dt).days
|
||||
x_values_numeric = [(d - min_x_dt).days if d is not None else None for d in x_values_raw]
|
||||
min_x, max_x = 0, total_days
|
||||
else: # Numeric or Categorical (treat categorical index as numeric for now)
|
||||
valid_x = [x for x in x_values_raw if x is not None]
|
||||
if not valid_x:
|
||||
plot_data['plot_type'] = 'table'; return plot_data
|
||||
min_x, max_x = min(valid_x), max(valid_x)
|
||||
x_values_numeric = x_values_raw # Already numeric (or will be treated as such)
|
||||
|
||||
valid_y = [y for y in y_values_raw if y is not None]
|
||||
if not valid_y:
|
||||
plot_data['plot_type'] = 'table'; return plot_data
|
||||
min_y, max_y = min(valid_y), max(valid_y)
|
||||
|
||||
range_x = max_x - min_x
|
||||
range_y = max_y - min_y
|
||||
|
||||
# Scale points
|
||||
for i, row in enumerate(results):
|
||||
x_num = x_values_numeric[i]
|
||||
y_num = y_values_raw[i] # Use original list which might have None
|
||||
|
||||
if x_num is None or y_num is None: continue # Skip points with missing essential data
|
||||
|
||||
# Scale X to drawing width, Y to drawing height (inverted Y for SVG)
|
||||
scaled_x = margin['left'] + _normalize_value(x_num, min_x, range_x, draw_width)
|
||||
scaled_y = margin['top'] + draw_height - _normalize_value(y_num, min_y, range_y, draw_height)
|
||||
|
||||
points.append({
|
||||
'x': scaled_x,
|
||||
'y': scaled_y,
|
||||
'original': row # Store original row data for tooltips
|
||||
})
|
||||
|
||||
# --- Generate Ticks ---
|
||||
num_ticks = 5 # Desired number of ticks
|
||||
# X Ticks
|
||||
x_ticks = []
|
||||
if range_x >= 0:
|
||||
step_x = (max_x - min_x) / (num_ticks -1) if num_ticks > 1 and range_x > 0 else 0
|
||||
for i in range(num_ticks):
|
||||
tick_val_raw = min_x + i * step_x
|
||||
tick_pos = margin['left'] + _normalize_value(tick_val_raw, min_x, range_x, draw_width)
|
||||
label = ""
|
||||
if x_type == 'datetime':
|
||||
tick_date = min_x_dt + timedelta(days=tick_val_raw)
|
||||
label = tick_date.strftime('%Y-%m-%d') # Format date label
|
||||
else: # Numeric
|
||||
label = f"{tick_val_raw:.1f}" if isinstance(tick_val_raw, float) else str(tick_val_raw)
|
||||
|
||||
x_ticks.append({'value': tick_val_raw, 'label': label, 'position': tick_pos})
|
||||
|
||||
# Y Ticks
|
||||
y_ticks = []
|
||||
if range_y >= 0:
|
||||
step_y = (max_y - min_y) / (num_ticks - 1) if num_ticks > 1 and range_y > 0 else 0
|
||||
for i in range(num_ticks):
|
||||
tick_val = min_y + i * step_y
|
||||
tick_pos = margin['top'] + draw_height - _normalize_value(tick_val, min_y, range_y, draw_height)
|
||||
label = f"{tick_val:.1f}" if isinstance(tick_val, float) else str(tick_val)
|
||||
y_ticks.append({'value': tick_val, 'label': label, 'position': tick_pos})
|
||||
|
||||
|
||||
# --- Finalize Plot Data ---
|
||||
# For now, put all points into one series
|
||||
plot_data['plots'].append({
|
||||
'label': f'{y_col} vs {x_col}',
|
||||
'color': '#388fed', # Default color
|
||||
'points': points
|
||||
})
|
||||
plot_data['x_ticks'] = x_ticks
|
||||
plot_data['y_ticks'] = y_ticks
|
||||
|
||||
# Add specific adjustments for plot types if needed (e.g., bar width)
|
||||
if plot_type == 'bar':
|
||||
# Calculate bar width based on number of bars/categories
|
||||
# This needs more refinement based on how categorical X is handled
|
||||
plot_data['bar_width'] = draw_width / len(points) * 0.8 if points else 10
|
||||
|
||||
|
||||
return plot_data
|
||||
Reference in New Issue
Block a user