Optimise count_prs_over_time function to result in 14.2X improvement in speed which will hopefully remove lag on page requests
This commit is contained in:
59
utils.py
59
utils.py
@@ -344,47 +344,52 @@ def get_workout_counts(workouts, period='week'):
|
||||
return workout_counts
|
||||
|
||||
def count_prs_over_time(workouts, period='week'):
|
||||
# Convert to DataFrame
|
||||
df = pd.DataFrame(workouts)
|
||||
|
||||
# Convert 'StartDate' to datetime
|
||||
df['StartDate'] = pd.to_datetime(df['StartDate'])
|
||||
|
||||
# Determine the range of periods to cover
|
||||
min_date = df['StartDate'].min()
|
||||
max_date = pd.Timestamp(datetime.now())
|
||||
# Set period as week or month
|
||||
df['Period'] = df['StartDate'].dt.to_period('W' if period == 'week' else 'M')
|
||||
|
||||
# Generate a complete range of periods
|
||||
period_range = pd.date_range(start=min_date, end=max_date, freq='W-MON' if period == 'week' else 'MS')
|
||||
# Group by Person, Exercise, and Period to find max Estimated1RM in each period
|
||||
period_max = df.groupby(['PersonId', 'ExerciseId', 'Period'])['Estimated1RM'].max().reset_index()
|
||||
|
||||
# Initialize a dictionary to store PR counts and names
|
||||
pr_counts = {
|
||||
person_id: {
|
||||
"PersonName": person_name,
|
||||
"PRCounts": {p: 0 for p in period_range}
|
||||
} for person_id, person_name in df[['PersonId', 'PersonName']].drop_duplicates().values
|
||||
}
|
||||
# Determine all-time max Estimated1RM up to the start of each period
|
||||
period_max['AllTimeMax'] = period_max.groupby(['PersonId', 'ExerciseId'])['Estimated1RM'].cummax().shift(1)
|
||||
|
||||
# Process the workouts
|
||||
for person_id, person_data in pr_counts.items():
|
||||
person_df = df[df['PersonId'] == person_id]
|
||||
# Identify PRs as entries where the period's max Estimated1RM exceeds the all-time max
|
||||
period_max['IsPR'] = period_max['Estimated1RM'] > period_max['AllTimeMax']
|
||||
|
||||
for period_start in person_data["PRCounts"]:
|
||||
period_end = period_start + pd.DateOffset(weeks=1) if period == 'week' else period_start + pd.DateOffset(months=1)
|
||||
period_workouts = person_df[(person_df['StartDate'] >= period_start) & (person_df['StartDate'] < period_end)]
|
||||
# Count PRs in each period for each person
|
||||
pr_counts = period_max.groupby(['PersonId', 'Period'])['IsPR'].sum().reset_index()
|
||||
|
||||
for exercise_id in period_workouts['ExerciseId'].unique():
|
||||
exercise_max = period_workouts[period_workouts['ExerciseId'] == exercise_id]['Estimated1RM'].max()
|
||||
# Convert 'Period' to timestamp using the start date of the period
|
||||
pr_counts['Period'] = pr_counts['Period'].apply(lambda x: x.start_time)
|
||||
|
||||
# Check if this is a PR
|
||||
previous_max = person_df[(person_df['StartDate'] < period_start) &
|
||||
(person_df['ExerciseId'] == exercise_id)]['Estimated1RM'].max()
|
||||
# Pivot table to get the desired output format
|
||||
output = pr_counts.pivot(index='PersonId', columns='Period', values='IsPR').fillna(0)
|
||||
|
||||
if pd.isna(previous_max) or exercise_max > previous_max:
|
||||
person_data["PRCounts"][period_start] += 1
|
||||
# Convert only the PR count columns to integers
|
||||
for col in output.columns:
|
||||
output[col] = output[col].astype(int)
|
||||
|
||||
return pr_counts
|
||||
# Merge with names and convert to desired format
|
||||
names = df[['PersonId', 'PersonName']].drop_duplicates().set_index('PersonId')
|
||||
output = names.join(output, how='left').fillna(0)
|
||||
|
||||
# Reset the index to bring 'PersonId' back as a column
|
||||
output.reset_index(inplace=True)
|
||||
|
||||
# Convert to the final dictionary format with PRCounts nested
|
||||
result = {}
|
||||
for index, row in output.iterrows():
|
||||
person_id = row['PersonId']
|
||||
person_name = row['PersonName']
|
||||
pr_counts = row.drop(['PersonId', 'PersonName']).to_dict()
|
||||
result[person_id] = {"PersonName": person_name, "PRCounts": pr_counts}
|
||||
|
||||
return result
|
||||
|
||||
def get_weekly_pr_graph_model(title, weekly_pr_data):
|
||||
# Assuming weekly_pr_data is in the format {1: {"PersonName": "Alice", "PRCounts": {Timestamp('2022-01-01', freq='W-MON'): 0, ...}}, 2: {...}, ...}
|
||||
|
||||
Reference in New Issue
Block a user