Add line of best fit (adding dependency on numpy)
This commit is contained in:
15
db.py
15
db.py
@@ -1,5 +1,6 @@
|
||||
import os
|
||||
import psycopg2
|
||||
import numpy as np
|
||||
from psycopg2.extras import RealDictCursor
|
||||
from datetime import datetime
|
||||
from urllib.parse import urlparse
|
||||
@@ -505,6 +506,17 @@ class DataBase():
|
||||
total_span = date_range.days or 1
|
||||
relative_positions = [(date - min_date).days / total_span for date in start_dates]
|
||||
|
||||
# Convert relative positions and scaled estimated 1RM values to numpy arrays
|
||||
x = np.array(relative_positions)
|
||||
y = np.array(estimated_1rm_scaled)
|
||||
|
||||
# Calculate the slope (m) and y-intercept (b) of the line of best fit
|
||||
m, b = np.polyfit(x, y, 1)
|
||||
|
||||
# Generate points along the line of best fit
|
||||
y_best_fit = [m * xi + b for xi in x]
|
||||
best_fit_points = zip(y_best_fit, relative_positions)
|
||||
|
||||
# Create messages and zip data for SVG plotting
|
||||
messages = [f'{t["repetitions"]} x {t["weight"]}kg ({t["estimated_1rm"]}kg E1RM) on {t["start_date"].strftime("%d %b %y")}' for t in topsets]
|
||||
data_points = zip(estimated_1rm_scaled, relative_positions, messages)
|
||||
@@ -514,5 +526,6 @@ class DataBase():
|
||||
'exercise_name': topsets[0]['exercise_name'],
|
||||
'vb_width': vb_width,
|
||||
'vb_height': vb_height,
|
||||
'data_points': list(data_points)
|
||||
'data_points': list(data_points),
|
||||
'best_fit_points': list(best_fit_points),
|
||||
}
|
||||
Reference in New Issue
Block a user