diff --git a/db.py b/db.py index acbbf8d..4227c40 100644 --- a/db.py +++ b/db.py @@ -7,7 +7,7 @@ from urllib.parse import urlparse from flask import g -from utils import get_all_exercises_from_topsets, get_stats_from_topsets, get_workouts +from utils import get_all_exercises_from_topsets, get_exercise_graph_model, get_stats_from_topsets, get_workouts class DataBase(): @@ -476,69 +476,8 @@ class DataBase(): repetitions = [t['repetitions'] for t in topsets] weight = [t['weight'] for t in topsets] start_dates = [t['start_date'] for t in topsets] - min_date, max_date = min(start_dates), max(start_dates) - min_e1rm, max_e1rm = min(estimated_1rm), max(estimated_1rm) - min_reps, max_reps = min(repetitions), max(repetitions) - min_weight, max_weight = min(weight), max(weight) - - # Calculate viewBox dimensions - date_range = max_date - min_date - total_span = date_range.days or 1 - e1rm_range = (max_e1rm - min_e1rm) or 1 - reps_range = (max_reps - min_reps) or 1 - weight_range = (max_weight - min_weight) or 1 - vb_width, vb_height = total_span, e1rm_range - vb_width *= 200 / vb_width # Scale to 200px width - vb_height *= 75 / vb_height # Scale to 75px height - - # Scale estimated_1rm values for SVG plotting - estimated_1rm_scaled = [((value - min_e1rm) / e1rm_range) * vb_height for value in estimated_1rm] - repetitions_scaled = [((value - min_reps) / reps_range) * vb_height for value in repetitions] - weight_scaled = [((value - min_weight) / weight_range) * vb_height for value in weight] - - relative_positions = [(date - min_date).days / total_span for date in start_dates] - - # Convert relative positions and scaled estimated 1RM values to numpy arrays - x = np.array(relative_positions) - y = np.array(estimated_1rm_scaled) - - # Calculate the slope (m) and y-intercept (b) of the line of best fit - m, b = np.polyfit(x, y, 1) - - # Generate points along the line of best fit - y_best_fit = [m * xi + b for xi in x] - best_fit_points = zip(y_best_fit, relative_positions) - - # Create messages and zip data for SVG plotting messages = [f'{t["repetitions"]} x {t["weight"]}kg ({t["estimated_1rm"]}kg E1RM) on {t["start_date"].strftime("%d %b %y")}' for t in topsets] - estimated_1rm_points = zip(estimated_1rm_scaled, relative_positions, messages) - repetitions_points = zip(repetitions_scaled, relative_positions, messages) - weight_points = zip(weight_scaled, relative_positions, messages) - repetitions = { - 'label': 'Reps', - 'color': '#388fed', - 'points': list(repetitions_points) - } - weight = { - 'label': 'Weight', - 'color': '#bd3178', - 'points': list(weight_points) - } - estimated_1rm = { - 'label': 'E1RM', - 'color': '#2ca02c', - 'points': list(estimated_1rm_points) - } + exercise_progress = get_exercise_graph_model(topsets[0]['exercise_name'], estimated_1rm, repetitions, weight, start_dates, messages) - plot_labels = zip(relative_positions, messages) - - # Return exercise data with SVG dimensions and data points - return { - 'title': topsets[0]['exercise_name'], - 'vb_width': vb_width, - 'vb_height': vb_height, - 'plots': [repetitions, weight, estimated_1rm], - 'best_fit_points': list(best_fit_points), - 'plot_labels': plot_labels - } \ No newline at end of file + return exercise_progress \ No newline at end of file diff --git a/templates/dashboard.html b/templates/dashboard.html index fc34bdf..0c2f0b0 100644 --- a/templates/dashboard.html +++ b/templates/dashboard.html @@ -133,10 +133,7 @@
- + {{ render_partial('partials/sparkline.html', **e['ExerciseProgressGraph']) }}
diff --git a/templates/partials/sparkline.html b/templates/partials/sparkline.html index eb3fe50..f07a61a 100644 --- a/templates/partials/sparkline.html +++ b/templates/partials/sparkline.html @@ -2,7 +2,7 @@ {% set margin = 2 %} {% macro path(data_points, vb_height) %} - {% for value, position, message in data_points %} + {% for value, position in data_points %} {% set x = (position * vb_width)+margin %} {% set y = (vb_height - value)+margin %} {% if loop.first %}M{{ x | int }} {{ y | int }}{% else %} L{{ x | int }} {{ y | int }}{% endif %} @@ -18,7 +18,7 @@ {% endmacro %} {% macro circles(data_points, color) %} - {% for value, position, message in data_points %} + {% for value, position in data_points %} {% set x = (position * vb_width)+margin %} {% set y = (vb_height - value)+margin %} diff --git a/utils.py b/utils.py index 1f37da7..a2cfd0b 100644 --- a/utils.py +++ b/utils.py @@ -1,4 +1,5 @@ from datetime import datetime, date, timedelta +import numpy as np import json @@ -44,10 +45,20 @@ def get_topsets_for_person(person_topsets): # Sort topsets by StartDate in descending order sorted_topsets = sorted(exercise_topsets, key=lambda x: x['StartDate'], reverse=True) + # Extracting values and calculating value ranges for SVG dimensions + estimated_1rm = [t['Estimated1RM'] for t in exercise_topsets] + repetitions = [t['Repetitions'] for t in exercise_topsets] + weight = [t['Weight'] for t in exercise_topsets] + start_dates = [t['StartDate'] for t in exercise_topsets] + messages = [f'{t["Repetitions"]} x {t["Weight"]}kg ({t["Estimated1RM"]}kg E1RM) on {t["StartDate"].strftime("%d %b %y")}' for t in exercise_topsets] + + exercise_progress = get_exercise_graph_model(exercise_topsets[0]['ExerciseName'], estimated_1rm, repetitions, weight, start_dates, messages) + exercises_topsets.append({ 'ExerciseId': e['ExerciseId'], 'ExerciseName': e['ExerciseName'], - 'Topsets': sorted_topsets + 'Topsets': sorted_topsets, + 'ExerciseProgressGraph': exercise_progress }) return exercises_topsets @@ -223,3 +234,75 @@ def get_date_info(input_date, selected_view): 'start_date': first_day_of_year, 'end_date': last_day_of_year, } + +def get_exercise_graph_model(title, estimated_1rm, repetitions, weight, start_dates, messages): + min_date, max_date = min(start_dates), max(start_dates) + min_e1rm, max_e1rm = min(estimated_1rm), max(estimated_1rm) + min_reps, max_reps = min(repetitions), max(repetitions) + min_weight, max_weight = min(weight), max(weight) + + # Calculate viewBox dimensions + date_range = max_date - min_date + total_span = date_range.days or 1 + e1rm_range = (max_e1rm - min_e1rm) or 1 + reps_range = (max_reps - min_reps) or 1 + weight_range = (max_weight - min_weight) or 1 + vb_width, vb_height = total_span, e1rm_range + vb_width *= 200 / vb_width # Scale to 200px width + vb_height *= 75 / vb_height # Scale to 75px height + + # Scale estimated_1rm values for SVG plotting + estimated_1rm_scaled = [((value - min_e1rm) / e1rm_range) * vb_height for value in estimated_1rm] + repetitions_scaled = [((value - min_reps) / reps_range) * vb_height for value in repetitions] + weight_scaled = [((value - min_weight) / weight_range) * vb_height for value in weight] + + relative_positions = [(date - min_date).days / total_span for date in start_dates] + + best_fit_points = [] + # trry catch LinAlgError + try: + # Convert relative positions and scaled estimated 1RM values to numpy arrays + x = np.array(relative_positions) + y = np.array(estimated_1rm_scaled) + + # Calculate the slope (m) and y-intercept (b) of the line of best fit + m, b = np.polyfit(x, y, 1) + + # Generate points along the line of best fit + y_best_fit = [m * xi + b for xi in x] + best_fit_points = list(zip(y_best_fit, relative_positions)) + except np.linalg.LinAlgError: + pass + + # Create messages and zip data for SVG plotting + estimated_1rm_points = zip(estimated_1rm_scaled, relative_positions) + repetitions_points = zip(repetitions_scaled, relative_positions) + weight_points = zip(weight_scaled, relative_positions) + + repetitions = { + 'label': 'Reps', + 'color': '#388fed', + 'points': list(repetitions_points) + } + weight = { + 'label': 'Weight', + 'color': '#bd3178', + 'points': list(weight_points) + } + estimated_1rm = { + 'label': 'E1RM', + 'color': '#2ca02c', + 'points': list(estimated_1rm_points) + } + + plot_labels = zip(relative_positions, messages) + + # Return exercise data with SVG dimensions and data points + return { + 'title': title, + 'vb_width': vb_width, + 'vb_height': vb_height, + 'plots': [repetitions, weight, estimated_1rm], + 'best_fit_points': best_fit_points, + 'plot_labels': plot_labels + } \ No newline at end of file