Plot E1RM, reps, & weight on user progress sparkline, also reduced generated svg size by half
This commit is contained in:
41
db.py
41
db.py
@@ -490,21 +490,30 @@ class DataBase():
|
||||
|
||||
# Extracting values and calculating value ranges for SVG dimensions
|
||||
estimated_1rm = [t['estimated_1rm'] for t in topsets]
|
||||
repetitions = [t['repetitions'] for t in topsets]
|
||||
weight = [t['weight'] for t in topsets]
|
||||
start_dates = [t['start_date'] for t in topsets]
|
||||
min_date, max_date = min(start_dates), max(start_dates)
|
||||
min_value, max_value = min(estimated_1rm), max(estimated_1rm)
|
||||
min_e1rm, max_e1rm = min(estimated_1rm), max(estimated_1rm)
|
||||
min_reps, max_reps = min(repetitions), max(repetitions)
|
||||
min_weight, max_weight = min(weight), max(weight)
|
||||
|
||||
# Calculate viewBox dimensions
|
||||
date_range = max_date - min_date
|
||||
value_range = max_value - min_value
|
||||
vb_width, vb_height = date_range.days, value_range
|
||||
e1rm_range = max_e1rm - min_e1rm
|
||||
reps_range = max_reps - min_reps
|
||||
weight_range = max_weight - min_weight
|
||||
vb_width, vb_height = date_range.days, e1rm_range
|
||||
vb_width *= 200 / vb_width # Scale to 200px width
|
||||
vb_height *= 75 / vb_height # Scale to 75px height
|
||||
|
||||
# Scale estimated_1rm values for SVG plotting
|
||||
estimated_1rm_scaled = [((value - min_value) / value_range) * vb_height for value in estimated_1rm]
|
||||
precision = 3
|
||||
estimated_1rm_scaled = [round(((value - min_e1rm) / e1rm_range) * vb_height, precision) for value in estimated_1rm]
|
||||
repetitions_scaled = [round(((value - min_reps) / reps_range) * vb_height, precision) for value in repetitions]
|
||||
weight_scaled = [round(((value - min_weight) / weight_range) * vb_height, precision) for value in weight]
|
||||
total_span = date_range.days or 1
|
||||
relative_positions = [(date - min_date).days / total_span for date in start_dates]
|
||||
relative_positions = [round((date - min_date).days / total_span, precision) for date in start_dates]
|
||||
|
||||
# Convert relative positions and scaled estimated 1RM values to numpy arrays
|
||||
x = np.array(relative_positions)
|
||||
@@ -519,13 +528,31 @@ class DataBase():
|
||||
|
||||
# Create messages and zip data for SVG plotting
|
||||
messages = [f'{t["repetitions"]} x {t["weight"]}kg ({t["estimated_1rm"]}kg E1RM) on {t["start_date"].strftime("%d %b %y")}' for t in topsets]
|
||||
data_points = zip(estimated_1rm_scaled, relative_positions, messages)
|
||||
estimated_1rm_points = zip(estimated_1rm_scaled, relative_positions, messages)
|
||||
repetitions_points = zip(repetitions_scaled, relative_positions, messages)
|
||||
weight_points = zip(weight_scaled, relative_positions, messages)
|
||||
|
||||
estimated_1rm = {
|
||||
'label': 'E1RM',
|
||||
'color': '#2ca02c',
|
||||
'points': list(estimated_1rm_points)
|
||||
}
|
||||
repetitions = {
|
||||
'label': 'Reps',
|
||||
'color': '#388fed',
|
||||
'points': list(repetitions_points)
|
||||
}
|
||||
weight = {
|
||||
'label': 'Weight',
|
||||
'color': '#bd3178',
|
||||
'points': list(weight_points)
|
||||
}
|
||||
|
||||
# Return exercise data with SVG dimensions and data points
|
||||
return {
|
||||
'exercise_name': topsets[0]['exercise_name'],
|
||||
'vb_width': vb_width,
|
||||
'vb_height': vb_height,
|
||||
'data_points': list(data_points),
|
||||
'plots': [estimated_1rm, repetitions, weight],
|
||||
'best_fit_points': list(best_fit_points),
|
||||
}
|
||||
Reference in New Issue
Block a user