Add ability to plot saved queries using plotly, need to check performance in production, also need to improve generate_plot function
This commit is contained in:
37
utils.py
37
utils.py
@@ -2,6 +2,8 @@ import colorsys
|
||||
from datetime import datetime, date, timedelta
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import plotly.express as px
|
||||
import plotly.io as pio
|
||||
|
||||
def get_workouts(topsets):
|
||||
# Ensure all entries have 'WorkoutId' and 'TopSetId', then sort by 'WorkoutId' and 'TopSetId'
|
||||
@@ -439,4 +441,37 @@ def get_distinct_colors(n):
|
||||
rgb = colorsys.hls_to_rgb(hue, 0.6, 0.4) # Fixed lightness and saturation
|
||||
hex_color = '#{:02x}{:02x}{:02x}'.format(int(rgb[0]*255), int(rgb[1]*255), int(rgb[2]*255))
|
||||
colors.append(hex_color)
|
||||
return colors
|
||||
return colors
|
||||
|
||||
def generate_plot(df, title):
|
||||
"""
|
||||
Analyzes the DataFrame and generates an appropriate Plotly visualization.
|
||||
Returns the Plotly figure as a div string.
|
||||
"""
|
||||
if df.empty:
|
||||
return "<p>No data available to plot.</p>"
|
||||
|
||||
num_columns = len(df.columns)
|
||||
|
||||
# Simple logic to decide plot type based on DataFrame structure
|
||||
if num_columns == 1:
|
||||
# Single column: perhaps a histogram or bar chart
|
||||
column = df.columns[0]
|
||||
if pd.api.types.is_numeric_dtype(df[column]):
|
||||
fig = px.histogram(df, x=column, title=title)
|
||||
else:
|
||||
fig = px.bar(df, x=column, title=title)
|
||||
elif num_columns == 2:
|
||||
# Two columns: scatter plot or line chart
|
||||
col1, col2 = df.columns
|
||||
if pd.api.types.is_numeric_dtype(df[col1]) and pd.api.types.is_numeric_dtype(df[col2]):
|
||||
fig = px.scatter(df, x=col1, y=col2, title=title)
|
||||
else:
|
||||
fig = px.bar(df, x=col1, y=col2, title=title)
|
||||
else:
|
||||
# More than two columns: heatmap or other complex plots
|
||||
fig = px.imshow(df.corr(), text_auto=True, title=title)
|
||||
|
||||
# Convert Plotly figure to HTML div
|
||||
plot_div = pio.to_html(fig, full_html=False)
|
||||
return plot_div
|
||||
|
||||
Reference in New Issue
Block a user