Minor refactor in attempt to speed up site

This commit is contained in:
Peter Stockings
2025-01-25 00:16:32 +11:00
parent 78f2ce2317
commit 76b610c949
2 changed files with 64 additions and 74 deletions

59
db.py
View File

@@ -534,7 +534,7 @@ class DataBase():
w.workout_id,
to_char(w.start_date, 'Mon DD YYYY') AS formatted_start_date,
w.note,
t.filter as tag_filter,
t.filter AS tag_filter,
t.name AS tag_name
FROM person p
LEFT JOIN workout w ON p.person_id = w.person_id AND w.note IS NOT NULL AND w.note <> ''
@@ -545,20 +545,20 @@ class DataBase():
"""
# Execute the SQL query
raw_workout_notes = self.execute(sql_query, [person_id])
raw_data = self.execute(sql_query, [person_id])
# Initialize variables to hold the person's name and the workouts
person_name = None
if not raw_data:
return None, []
# Extract person name from the first row (all rows have the same person name)
person_name = raw_data[0]['person_name']
# Process the workout notes
workout_notes = {}
for row in raw_workout_notes:
# Update person_name (it will be the same for all rows)
if person_name is None:
person_name = row['person_name']
# Process workout notes and tags if there's a note associated with the workout
if row['workout_id'] and row['note']: # Check if workout_id exists and note is not None or empty
for row in raw_data:
workout_id = row['workout_id']
if workout_id and row['note']:
# Initialize the workout entry if it doesn't exist
if workout_id not in workout_notes:
workout_notes[workout_id] = {
'workout_id': workout_id,
@@ -566,37 +566,38 @@ class DataBase():
'note': row['note'],
'tags': []
}
if row['tag_name']: # Only add the tag if it is not None
workout_notes[workout_id]['tags'].append({'tag_filter': row['tag_filter'], 'tag_name': row['tag_name'], 'person_id': person_id})
# Add tags if present
if row['tag_name']:
workout_notes[workout_id]['tags'].append({
'tag_filter': row['tag_filter'],
'tag_name': row['tag_name'],
'person_id': person_id
})
# Convert the workout_notes dictionary back into a list as the final result
# Convert to a list for the final output
workout_notes_list = list(workout_notes.values())
return person_name, workout_notes_list
# Return a tuple containing the person's name and their workout notes
return (person_name, workout_notes_list)
def get_exercise_earliest_and_latest_dates(self, person_id, exercise_id):
sql_query = """
SELECT
w.start_date
MIN(w.start_date) AS earliest_date,
MAX(w.start_date) AS latest_date
FROM workout w
INNER JOIN topset t on w.workout_id = t.workout_id
INNER JOIN exercise e on t.exercise_id = e.exercise_id
WHERE w.person_id = %s AND e.exercise_id = %s
ORDER BY w.start_date DESC;
INNER JOIN topset t ON w.workout_id = t.workout_id
INNER JOIN exercise e ON t.exercise_id = e.exercise_id
WHERE w.person_id = %s AND e.exercise_id = %s;
"""
# Execute the SQL query
workout_exercise_dates = self.execute(sql_query, [person_id, exercise_id])
result = self.execute(sql_query, [person_id, exercise_id])
if not workout_exercise_dates:
if not result or not result[0]:
return None, None
latest_date = workout_exercise_dates[0]['start_date']
earliest_date = workout_exercise_dates[-1]['start_date']
return earliest_date, latest_date
return result[0]['earliest_date'], result[0]['latest_date']

View File

@@ -217,83 +217,71 @@ def flatten(lst):
return result
def get_exercise_graph_model(title, estimated_1rm, repetitions, weight, start_dates, messages, epoch, person_id, exercise_id, min_date=None, max_date=None):
# Precompute ranges
min_date, max_date = min(start_dates), max(start_dates)
total_span = (max_date - min_date).days or 1
min_e1rm, max_e1rm = min(estimated_1rm), max(estimated_1rm)
min_reps, max_reps = min(repetitions), max(repetitions)
min_weight, max_weight = min(weight), max(weight)
e1rm_range = max_e1rm - min_e1rm or 1
reps_range = max_reps - min_reps or 1
weight_range = max_weight - min_weight or 1
# Calculate viewBox dimensions
date_range = max_date - min_date
total_span = date_range.days or 1
e1rm_range = (max_e1rm - min_e1rm) or 1
reps_range = (max_reps - min_reps) or 1
weight_range = (max_weight - min_weight) or 1
vb_width, vb_height = total_span, e1rm_range
vb_width *= 200 / vb_width # Scale to 200px width
vb_height *= 75 / vb_height # Scale to 75px height
# Scale estimated_1rm values for SVG plotting
estimated_1rm_scaled = [((value - min_e1rm) / e1rm_range) * vb_height for value in estimated_1rm]
repetitions_scaled = [((value - min_reps) / reps_range) * vb_height for value in repetitions]
weight_scaled = [((value - min_weight) / weight_range) * vb_height for value in weight]
relative_positions = [(date - min_date).days / total_span for date in start_dates]
# Convert the slope from scaled units per day to kg per day
slope_kg_per_day = (max_e1rm - min_e1rm) / total_span
# Use NumPy arrays for efficient scaling
relative_positions = np.array([(date - min_date).days / total_span for date in start_dates])
estimated_1rm_scaled = ((np.array(estimated_1rm) - min_e1rm) / e1rm_range) * vb_height
repetitions_scaled = ((np.array(repetitions) - min_reps) / reps_range) * vb_height
weight_scaled = ((np.array(weight) - min_weight) / weight_range) * vb_height
# Calculate slope and line of best fit
slope_kg_per_day = e1rm_range / total_span
best_fit_formula = {
'kg_per_week': round(slope_kg_per_day * 7, 1), # Convert to kg/week
'kg_per_month': round(slope_kg_per_day * 30, 1) # Convert to kg/month
'kg_per_week': round(slope_kg_per_day * 7, 1),
'kg_per_month': round(slope_kg_per_day * 30, 1)
}
best_fit_points = []
# Catch LinAlgError
try:
# Convert relative positions and scaled estimated 1RM values to numpy arrays
x = np.array(relative_positions)
y = np.array(estimated_1rm_scaled)
# Calculate the slope (m) and y-intercept (b) of the line of best fit
m, b = np.polyfit(x, y, 1)
# Generate points along the line of best fit
y_best_fit = [m * xi + b for xi in x]
best_fit_points = list(zip(y_best_fit, relative_positions))
except:
# Calculate line of best fit using NumPy
m, b = np.polyfit(relative_positions, estimated_1rm_scaled, 1)
y_best_fit = m * relative_positions + b
best_fit_points = list(zip(y_best_fit.tolist(), relative_positions.tolist()))
except np.linalg.LinAlgError:
pass
# Create messages and zip data for SVG plotting
estimated_1rm_points = zip(estimated_1rm_scaled, relative_positions)
repetitions_points = zip(repetitions_scaled, relative_positions)
weight_points = zip(weight_scaled, relative_positions)
repetitions = {
# Prepare data for plots
repetitions_data = {
'label': 'Reps',
'color': '#388fed',
'points': list(repetitions_points)
'points': list(zip(repetitions_scaled.tolist(), relative_positions.tolist()))
}
weight = {
weight_data = {
'label': 'Weight',
'color': '#bd3178',
'points': list(weight_points)
'points': list(zip(weight_scaled.tolist(), relative_positions.tolist()))
}
estimated_1rm = {
estimated_1rm_data = {
'label': 'E1RM',
'color': '#2ca02c',
'points': list(estimated_1rm_points)
'points': list(zip(estimated_1rm_scaled.tolist(), relative_positions.tolist()))
}
plot_labels = zip(relative_positions, messages)
# Prepare plot labels
plot_labels = list(zip(relative_positions.tolist(), messages))
# Return exercise data with SVG dimensions and data points
return {
'title': title,
'vb_width': vb_width,
'vb_height': vb_height,
'plots': [repetitions, weight, estimated_1rm],
'plots': [repetitions_data, weight_data, estimated_1rm_data],
'best_fit_points': best_fit_points,
'best_fit_formula': best_fit_formula,
'plot_labels': plot_labels,
@@ -305,6 +293,7 @@ def get_exercise_graph_model(title, estimated_1rm, repetitions, weight, start_da
'max_date': max_date
}
def get_workout_counts(workouts, period='week'):
df = pd.DataFrame(workouts)