Switch to using polars

This commit is contained in:
Peter Stockings
2026-01-29 00:05:25 +11:00
parent dd82f461be
commit 3a0d4531b6
6 changed files with 156 additions and 134 deletions

View File

@@ -1,7 +1,7 @@
import colorsys
from datetime import datetime, date, timedelta
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.io as pio # Keep for now, might remove later if generate_plot is fully replaced
import math
@@ -110,32 +110,7 @@ def get_distinct_colors(n):
colors.append(hex_color)
return colors
def generate_plot(df: pd.DataFrame, title: str) -> str:
"""
Analyzes the DataFrame and generates an appropriate Plotly visualization.
Returns the Plotly figure as a div string.
Optimized for speed.
"""
if df.empty:
return "<p>No data available to plot.</p>"
num_columns = len(df.columns)
# Dictionary-based lookup for faster decision-making
plot_funcs = {
1: lambda: px.histogram(df, x=df.columns[0], title=title)
if pd.api.types.is_numeric_dtype(df.iloc[:, 0]) else px.bar(df, x=df.columns[0], title=title),
2: lambda: px.scatter(df, x=df.columns[0], y=df.columns[1], title=title)
if pd.api.types.is_numeric_dtype(df.iloc[:, 0]) and pd.api.types.is_numeric_dtype(df.iloc[:, 1])
else px.bar(df, x=df.columns[0], y=df.columns[1], title=title)
}
# Select plot function based on column count
fig = plot_funcs.get(num_columns, lambda: px.imshow(df.corr(numeric_only=True), text_auto=True, title=title))()
# Use static rendering for speed
return pio.to_html(fig, full_html=False, include_plotlyjs=False, config={'staticPlot': True})
def calculate_estimated_1rm(weight, repetitions):