Optimise get workout counts function (2-3X faster however it was already pretty fast, need to find more slow shit)
This commit is contained in:
46
utils.py
46
utils.py
@@ -309,39 +309,37 @@ def get_exercise_graph_model(title, estimated_1rm, repetitions, weight, start_da
|
||||
}
|
||||
|
||||
def get_workout_counts(workouts, period='week'):
|
||||
# Convert to DataFrame
|
||||
df = pd.DataFrame(workouts)
|
||||
|
||||
# Convert 'StartDate' to datetime
|
||||
# Convert 'StartDate' to datetime and set period
|
||||
df['StartDate'] = pd.to_datetime(df['StartDate'])
|
||||
df['Period'] = df['StartDate'].dt.to_period('W' if period == 'week' else 'M')
|
||||
|
||||
# Determine the range of periods to cover
|
||||
min_date = df['StartDate'].min()
|
||||
max_date = pd.Timestamp(datetime.now())
|
||||
# Group by PersonId, Period and count unique workouts
|
||||
workout_counts = df.groupby(['PersonId', 'Period'])['WorkoutId'].nunique().reset_index()
|
||||
|
||||
# Generate a complete range of periods
|
||||
freq = 'W-MON' if period == 'week' else 'MS'
|
||||
period_range = pd.date_range(start=min_date, end=max_date, freq=freq)
|
||||
# Convert 'Period' to timestamp using the start date of the period
|
||||
workout_counts['Period'] = workout_counts['Period'].apply(lambda x: x.start_time)
|
||||
|
||||
# Initialize a dictionary to store workout counts and person names
|
||||
workout_counts = {
|
||||
person_id: {
|
||||
"PersonName": person_name,
|
||||
"PRCounts": {p: 0 for p in period_range}
|
||||
} for person_id, person_name in df[['PersonId', 'PersonName']].drop_duplicates().values
|
||||
}
|
||||
# Pivot the result to get periods as columns
|
||||
workout_counts_pivot = workout_counts.pivot(index='PersonId', columns='Period', values='WorkoutId').fillna(0)
|
||||
|
||||
# Process the workouts
|
||||
for person_id, person_data in workout_counts.items():
|
||||
person_df = df[df['PersonId'] == person_id]
|
||||
# Include person names
|
||||
names = df[['PersonId', 'PersonName']].drop_duplicates().set_index('PersonId')
|
||||
workout_counts_final = names.join(workout_counts_pivot, how='left').fillna(0)
|
||||
|
||||
for period_start in person_data["PRCounts"]:
|
||||
period_end = period_start + pd.DateOffset(weeks=1) if period == 'week' else period_start + pd.DateOffset(months=1)
|
||||
period_workouts = person_df[(person_df['StartDate'] >= period_start) & (person_df['StartDate'] < period_end)]
|
||||
period_workout_count = period_workouts['WorkoutId'].unique()
|
||||
person_data["PRCounts"][period_start] = len(period_workout_count)
|
||||
# Convert DataFrame to dictionary
|
||||
result = workout_counts_final.reset_index().to_dict('records')
|
||||
|
||||
return workout_counts
|
||||
# Reformat the dictionary to desired structure
|
||||
formatted_result = {}
|
||||
for record in result:
|
||||
person_id = record.pop('PersonId')
|
||||
person_name = record.pop('PersonName')
|
||||
pr_counts = {k: v for k, v in record.items()}
|
||||
formatted_result[person_id] = {'PersonName': person_name, 'PRCounts': pr_counts}
|
||||
|
||||
return formatted_result
|
||||
|
||||
def count_prs_over_time(workouts, period='week'):
|
||||
df = pd.DataFrame(workouts)
|
||||
|
||||
Reference in New Issue
Block a user