Add neat arena

This commit is contained in:
Peter Stockings
2026-01-12 08:58:45 +11:00
parent e9cb8b52df
commit 840e597413
39 changed files with 5717 additions and 193 deletions

View File

@@ -5,6 +5,7 @@
"": { "": {
"name": "evolution", "name": "evolution",
"dependencies": { "dependencies": {
"phaser": "^3.90.0",
"react": "^19.2.0", "react": "^19.2.0",
"react-dom": "^19.2.0", "react-dom": "^19.2.0",
"react-router-dom": "^7.12.0", "react-router-dom": "^7.12.0",
@@ -314,6 +315,8 @@
"esutils": ["esutils@2.0.3", "", {}, "sha512-kVscqXk4OCp68SZ0dkgEKVi6/8ij300KBWTJq32P/dYeWTSwK41WyTxalN1eRmA5Z9UU/LX9D7FWSmV9SAYx6g=="], "esutils": ["esutils@2.0.3", "", {}, "sha512-kVscqXk4OCp68SZ0dkgEKVi6/8ij300KBWTJq32P/dYeWTSwK41WyTxalN1eRmA5Z9UU/LX9D7FWSmV9SAYx6g=="],
"eventemitter3": ["eventemitter3@5.0.1", "", {}, "sha512-GWkBvjiSZK87ELrYOSESUYeVIc9mvLLf/nXalMOS5dYrgZq9o5OVkbZAVM06CVxYsCwH9BDZFPlQTlPA1j4ahA=="],
"fast-deep-equal": ["fast-deep-equal@3.1.3", "", {}, "sha512-f3qQ9oQy9j2AhBe/H9VC91wLmKBCCU/gDOnKNAYG5hswO7BLKj09Hc5HYNz9cGI++xlpDCIgDaitVs03ATR84Q=="], "fast-deep-equal": ["fast-deep-equal@3.1.3", "", {}, "sha512-f3qQ9oQy9j2AhBe/H9VC91wLmKBCCU/gDOnKNAYG5hswO7BLKj09Hc5HYNz9cGI++xlpDCIgDaitVs03ATR84Q=="],
"fast-json-stable-stringify": ["fast-json-stable-stringify@2.1.0", "", {}, "sha512-lhd/wF+Lk98HZoTCtlVraHtfh5XYijIjalXck7saUtuanSDyLMxnHhSXEDJqHxD7msR8D0uCmqlkwjCV8xvwHw=="], "fast-json-stable-stringify": ["fast-json-stable-stringify@2.1.0", "", {}, "sha512-lhd/wF+Lk98HZoTCtlVraHtfh5XYijIjalXck7saUtuanSDyLMxnHhSXEDJqHxD7msR8D0uCmqlkwjCV8xvwHw=="],
@@ -402,6 +405,8 @@
"path-key": ["path-key@3.1.1", "", {}, "sha512-ojmeN0qd+y0jszEtoY48r0Peq5dwMEkIlCOu6Q5f41lfkswXuKtYrhgoTpLnyIcHm24Uhqx+5Tqm2InSwLhE6Q=="], "path-key": ["path-key@3.1.1", "", {}, "sha512-ojmeN0qd+y0jszEtoY48r0Peq5dwMEkIlCOu6Q5f41lfkswXuKtYrhgoTpLnyIcHm24Uhqx+5Tqm2InSwLhE6Q=="],
"phaser": ["phaser@3.90.0", "", { "dependencies": { "eventemitter3": "^5.0.1" } }, "sha512-/cziz/5ZIn02uDkC9RzN8VF9x3Gs3XdFFf9nkiMEQT3p7hQlWuyjy4QWosU802qqno2YSLn2BfqwOKLv/sSVfQ=="],
"picocolors": ["picocolors@1.1.1", "", {}, "sha512-xceH2snhtb5M9liqDsmEw56le376mTZkEX/jEb/RxNFyegNul7eNslCXP9FDj/Lcu0X8KEyMceP2ntpaHrDEVA=="], "picocolors": ["picocolors@1.1.1", "", {}, "sha512-xceH2snhtb5M9liqDsmEw56le376mTZkEX/jEb/RxNFyegNul7eNslCXP9FDj/Lcu0X8KEyMceP2ntpaHrDEVA=="],
"picomatch": ["picomatch@4.0.3", "", {}, "sha512-5gTmgEY/sqK6gFXLIsQNH19lWb4ebPDLA4SdLP7dsWkIXHWlG66oPuVvXSGFPppYZz8ZDZq0dYYrbHfBCVUb1Q=="], "picomatch": ["picomatch@4.0.3", "", {}, "sha512-5gTmgEY/sqK6gFXLIsQNH19lWb4ebPDLA4SdLP7dsWkIXHWlG66oPuVvXSGFPppYZz8ZDZq0dYYrbHfBCVUb1Q=="],

View File

@@ -10,6 +10,7 @@
"preview": "vite preview" "preview": "vite preview"
}, },
"dependencies": { "dependencies": {
"phaser": "^3.90.0",
"react": "^19.2.0", "react": "^19.2.0",
"react-dom": "^19.2.0", "react-dom": "^19.2.0",
"react-router-dom": "^7.12.0" "react-router-dom": "^7.12.0"

View File

@@ -2,6 +2,8 @@ import { Routes, Route, Navigate } from 'react-router-dom';
import Sidebar from './components/Sidebar'; import Sidebar from './components/Sidebar';
import ImageApprox from './apps/ImageApprox/ImageApprox'; import ImageApprox from './apps/ImageApprox/ImageApprox';
import SnakeAI from './apps/SnakeAI/SnakeAI'; import SnakeAI from './apps/SnakeAI/SnakeAI';
import RogueGenApp from './apps/RogueGen/RogueGenApp';
import NeatArena from './apps/NeatArena/NeatArena';
import './App.css'; import './App.css';
function App() { function App() {
@@ -13,6 +15,8 @@ function App() {
<Route path="/" element={<Navigate to="/image-approx" replace />} /> <Route path="/" element={<Navigate to="/image-approx" replace />} />
<Route path="/image-approx" element={<ImageApprox />} /> <Route path="/image-approx" element={<ImageApprox />} />
<Route path="/snake-ai" element={<SnakeAI />} /> <Route path="/snake-ai" element={<SnakeAI />} />
<Route path="/rogue-gen" element={<RogueGenApp />} />
<Route path="/neat-arena" element={<NeatArena />} />
<Route path="*" element={<div>App not found</div>} /> <Route path="*" element={<div>App not found</div>} />
</Routes> </Routes>
</main> </main>

View File

@@ -0,0 +1,112 @@
import { useEffect, useRef } from 'react';
interface FitnessGraphProps {
history: { generation: number; best: number; avg: number }[];
}
export default function FitnessGraph({ history }: FitnessGraphProps) {
const canvasRef = useRef<HTMLCanvasElement>(null);
useEffect(() => {
const canvas = canvasRef.current;
if (!canvas || history.length === 0) return;
const ctx = canvas.getContext('2d');
if (!ctx) return;
const width = canvas.width;
const height = canvas.height;
const padding = 40;
// Clear
ctx.fillStyle = '#1a1a2e';
ctx.fillRect(0, 0, width, height);
// Find data range
const maxGen = Math.max(...history.map(h => h.generation), 1);
const allFitness = [...history.map(h => h.best), ...history.map(h => h.avg)];
const maxFit = Math.max(...allFitness, 1);
const minFit = Math.min(...allFitness, -1);
const fitRange = maxFit - minFit;
// Draw grid
ctx.strokeStyle = '#2a2a3e';
ctx.lineWidth = 1;
for (let i = 0; i <= 5; i++) {
const y = padding + (height - 2 * padding) * (i / 5);
ctx.beginPath();
ctx.moveTo(padding, y);
ctx.lineTo(width - padding, y);
ctx.stroke();
// Y-axis labels
const fitValue = maxFit - (fitRange * i / 5);
ctx.fillStyle = '#888';
ctx.font = '11px monospace';
ctx.textAlign = 'right';
ctx.fillText(fitValue.toFixed(1), padding - 5, y + 4);
}
// Draw axes
ctx.strokeStyle = '#444';
ctx.lineWidth = 2;
ctx.beginPath();
ctx.moveTo(padding, padding);
ctx.lineTo(padding, height - padding);
ctx.lineTo(width - padding, height - padding);
ctx.stroke();
// Helper to convert data to canvas coords
const toX = (gen: number) => padding + ((width - 2 * padding) * gen / maxGen);
const toY = (fit: number) => {
const normalized = (maxFit - fit) / fitRange;
return padding + (height - 2 * padding) * normalized;
};
// Draw best fitness line
ctx.strokeStyle = '#00ff88';
ctx.lineWidth = 2;
ctx.beginPath();
history.forEach((h, i) => {
const x = toX(h.generation);
const y = toY(h.best);
if (i === 0) ctx.moveTo(x, y);
else ctx.lineTo(x, y);
});
ctx.stroke();
// Draw avg fitness line
ctx.strokeStyle = '#4488ff';
ctx.lineWidth = 2;
ctx.beginPath();
history.forEach((h, i) => {
const x = toX(h.generation);
const y = toY(h.avg);
if (i === 0) ctx.moveTo(x, y);
else ctx.lineTo(x, y);
});
ctx.stroke();
// Legend
ctx.font = '12px monospace';
ctx.fillStyle = '#00ff88';
ctx.fillText('● Best', width - 120, 25);
ctx.fillStyle = '#4488ff';
ctx.fillText('● Avg', width - 60, 25);
// X-axis label
ctx.fillStyle = '#888';
ctx.textAlign = 'center';
ctx.fillText('Generation', width / 2, height - 10);
}, [history]);
return (
<canvas
ref={canvasRef}
width={600}
height={200}
style={{ width: '100%', height: 'auto', borderRadius: '8px' }}
/>
);
}

View File

@@ -0,0 +1,239 @@
/* NEAT Arena Layout */
.neat-arena-layout {
display: flex;
gap: 1.5rem;
height: 100%;
padding: 1.5rem;
background: linear-gradient(135deg, #0f0f23 0%, #1a1a2e 100%);
}
/* Left Panel: Controls */
.controls-panel {
flex: 0 0 320px;
display: flex;
flex-direction: column;
gap: 1rem;
overflow-y: auto;
padding-right: 0.5rem;
}
.control-section {
background: rgba(255, 255, 255, 0.05);
border: 1px solid rgba(255, 255, 255, 0.1);
border-radius: 8px;
padding: 1rem;
backdrop-filter: blur(10px);
}
.control-section h3 {
margin: 0 0 0.75rem 0;
font-size: 0.95rem;
font-weight: 600;
color: #fff;
text-transform: uppercase;
letter-spacing: 0.5px;
}
.control-section h4 {
margin: 0 0 0.5rem 0;
font-size: 0.85rem;
font-weight: 600;
color: #aaa;
}
.control-group {
display: flex;
flex-direction: column;
gap: 0.5rem;
}
/* Buttons */
.btn-primary,
.btn-secondary {
padding: 0.75rem 1rem;
border: none;
border-radius: 6px;
font-size: 0.9rem;
font-weight: 600;
cursor: pointer;
transition: all 0.2s ease;
text-align: center;
}
.btn-primary {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
}
.btn-primary:hover:not(:disabled) {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.4);
}
.btn-primary.btn-stop {
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
}
.btn-secondary {
background: rgba(255, 255, 255, 0.1);
color: white;
border: 1px solid rgba(255, 255, 255, 0.2);
}
.btn-secondary:hover:not(:disabled) {
background: rgba(255, 255, 255, 0.15);
border-color: rgba(255, 255, 255, 0.3);
}
.btn-primary:disabled,
.btn-secondary:disabled {
opacity: 0.5;
cursor: not-allowed;
}
/* Stats Grid */
.stats-grid {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 0.75rem;
}
.stat-item {
display: flex;
flex-direction: column;
gap: 0.25rem;
padding: 0.75rem;
background: rgba(0, 0, 0, 0.3);
border-radius: 6px;
border: 1px solid rgba(255, 255, 255, 0.05);
}
.stat-label {
font-size: 0.75rem;
color: #aaa;
text-transform: uppercase;
letter-spacing: 0.5px;
}
.stat-value {
font-size: 1.25rem;
font-weight: 700;
color: #fff;
font-variant-numeric: tabular-nums;
}
/* Checkbox */
.checkbox-label {
display: flex;
align-items: center;
gap: 0.5rem;
cursor: pointer;
color: #ddd;
font-size: 0.9rem;
}
.checkbox-label input[type="checkbox"] {
width: 18px;
height: 18px;
cursor: pointer;
}
/* Info Section */
.info-section {
background: rgba(102, 126, 234, 0.1);
border: 1px solid rgba(102, 126, 234, 0.3);
border-radius: 8px;
padding: 1rem;
}
.info-section p {
margin: 0 0 0.75rem 0;
color: #ddd;
font-size: 0.85rem;
line-height: 1.5;
}
.info-section ul {
margin: 0;
padding-left: 1.25rem;
color: #bbb;
font-size: 0.85rem;
}
.info-section ul li {
margin-bottom: 0.25rem;
}
.text-muted {
color: #888;
font-size: 0.8rem;
}
.info-text {
margin-top: 0.5rem;
color: #aaa;
font-size: 0.8rem;
font-style: italic;
}
/* Right Panel: Viewer */
.viewer-panel {
flex: 1;
display: flex;
flex-direction: column;
min-width: 0;
}
.phaser-container {
flex: 1;
display: flex;
align-items: center;
justify-content: center;
background: rgba(0, 0, 0, 0.4);
border: 2px solid rgba(255, 255, 255, 0.1);
border-radius: 8px;
overflow: hidden;
}
.phaser-placeholder {
display: flex;
align-items: center;
justify-content: center;
width: 100%;
height: 100%;
}
.placeholder-content {
text-align: center;
color: rgba(255, 255, 255, 0.4);
}
.placeholder-content h2 {
margin: 0 0 0.5rem 0;
font-size: 2rem;
font-weight: 300;
}
.placeholder-content p {
margin: 0.25rem 0;
font-size: 1rem;
}
/* Scrollbar styling */
.controls-panel::-webkit-scrollbar {
width: 8px;
}
.controls-panel::-webkit-scrollbar-track {
background: rgba(0, 0, 0, 0.2);
border-radius: 4px;
}
.controls-panel::-webkit-scrollbar-thumb {
background: rgba(255, 255, 255, 0.2);
border-radius: 4px;
}
.controls-panel::-webkit-scrollbar-thumb:hover {
background: rgba(255, 255, 255, 0.3);
}

View File

@@ -0,0 +1,377 @@
import { useState, useRef, useEffect, useCallback } from 'react';
import AppContainer from '../../components/AppContainer';
import { createArenaViewer, getArenaScene } from '../../lib/neatArena/arenaScene';
import { createSimulation, stepSimulation } from '../../lib/neatArena/simulation';
import { spinnerBotAction } from '../../lib/neatArena/baselineBots';
import { createPopulation, getPopulationStats, DEFAULT_EVOLUTION_CONFIG, type Population } from '../../lib/neatArena/evolution';
import { createNetwork } from '../../lib/neatArena/network';
import { generateObservation, observationToInputs } from '../../lib/neatArena/sensors';
import { exportGenome, downloadGenomeAsFile, uploadGenomeFromFile } from '../../lib/neatArena/exportImport';
import type { SimulationState, AgentAction, Genome } from '../../lib/neatArena/types';
import type { TrainingWorkerMessage, TrainingWorkerResponse } from '../../lib/neatArena/training.worker';
import FitnessGraph from './FitnessGraph';
import './NeatArena.css';
/**
* NEAT Arena Miniapp
*
* Trains AI agents using NEAT (NeuroEvolution of Augmenting Topologies) to play
* a 2D top-down shooter arena via self-play.
*/
export default function NeatArena() {
// Training state
const [population, setPopulation] = useState<Population>(() => createPopulation(DEFAULT_EVOLUTION_CONFIG));
const [isTraining, setIsTraining] = useState(false);
const [showRays, setShowRays] = useState(false);
const [mapSeed] = useState(12345);
const [importedGenome, setImportedGenome] = useState<Genome | null>(null);
const [fitnessHistory, setFitnessHistory] = useState<{ generation: number; best: number; avg: number }[]>([]);
// Stats
const stats = getPopulationStats(population);
// Phaser game instance
const phaserGameRef = useRef<Phaser.Game | null>(null);
const phaserContainerRef = useRef<HTMLDivElement>(null);
// Exhibition match state (visualizing champion)
const simulationRef = useRef<SimulationState | null>(null);
// Web Worker
const workerRef = useRef<Worker | null>(null);
// Initialize Web Worker
useEffect(() => {
const worker = new Worker(new URL('../../lib/neatArena/training.worker.ts', import.meta.url), {
type: 'module'
});
worker.onmessage = (e: MessageEvent<TrainingWorkerResponse>) => {
const response = e.data;
switch (response.type) {
case 'update':
if (response.population) {
setPopulation(response.population);
console.log('[UI] Stats?', response.stats ? 'YES' : 'NO', response.stats);
// Track fitness history for graph
if (response.stats) {
setFitnessHistory(prev => [...prev, {
generation: response.stats!.generation,
best: response.stats!.maxFitness,
avg: response.stats!.avgFitness,
}]);
}
}
break;
case 'error':
console.error('Worker error:', response.error);
setIsTraining(false);
alert('Training error: ' + response.error);
break;
case 'ready':
console.log('Worker ready');
break;
}
};
// Initialize worker with config
worker.postMessage({
type: 'init',
config: DEFAULT_EVOLUTION_CONFIG,
} as TrainingWorkerMessage);
workerRef.current = worker;
return () => {
worker.terminate();
workerRef.current = null;
};
}, []);
// Control worker based on training state
useEffect(() => {
if (!workerRef.current) return;
if (isTraining) {
workerRef.current.postMessage({
type: 'start',
} as TrainingWorkerMessage);
} else {
workerRef.current.postMessage({
type: 'pause',
} as TrainingWorkerMessage);
}
}, [isTraining]);
// Initialize Phaser
useEffect(() => {
if (!phaserContainerRef.current) return;
phaserContainerRef.current.innerHTML = '';
const game = createArenaViewer(phaserContainerRef.current);
phaserGameRef.current = game;
simulationRef.current = createSimulation(mapSeed, 0);
return () => {
game.destroy(true);
phaserGameRef.current = null;
};
}, [mapSeed]);
// Exhibition match loop (visualizing champion vs baseline)
useEffect(() => {
if (isTraining) return; // Don't run exhibition during training
if (!phaserGameRef.current) return;
const interval = setInterval(() => {
if (!simulationRef.current) return;
const sim = simulationRef.current;
if (sim.isOver) {
simulationRef.current = createSimulation(mapSeed, 0);
return;
}
// Agent 0: Imported genome, current gen best, or spinner
let action0: AgentAction;
// Priority: imported > current gen best > all-time best > spinner
const currentGenBest = population.genomes.length > 0
? population.genomes.reduce((best, g) => g.fitness > best.fitness ? g : best)
: null;
const genomeToUse = importedGenome || currentGenBest || population.bestGenomeEver;
if (genomeToUse) {
const network = createNetwork(genomeToUse);
const obs = generateObservation(0, sim);
const inputs = observationToInputs(obs);
const outputs = network.activate(inputs);
action0 = {
moveX: outputs[0],
moveY: outputs[1],
turn: outputs[2],
shoot: outputs[3],
};
} else {
action0 = spinnerBotAction();
}
// Agent 1: Spinner bot
const action1 = spinnerBotAction();
simulationRef.current = stepSimulation(sim, [action0, action1]);
if (phaserGameRef.current) {
const scene = getArenaScene(phaserGameRef.current);
scene.updateSimulation(simulationRef.current);
scene.setShowRays(showRays);
}
}, 1000 / 30);
return () => clearInterval(interval);
}, [isTraining, showRays, mapSeed, population.bestGenomeEver, importedGenome]);
const handleReset = useCallback(() => {
setIsTraining(false);
setImportedGenome(null);
setFitnessHistory([]);
if (workerRef.current) {
workerRef.current.postMessage({
type: 'reset',
} as TrainingWorkerMessage);
}
simulationRef.current = createSimulation(mapSeed, 0);
if (phaserGameRef.current) {
const scene = getArenaScene(phaserGameRef.current);
scene.updateSimulation(simulationRef.current);
}
}, [mapSeed]);
const handleStepGeneration = useCallback(() => {
if (workerRef.current) {
workerRef.current.postMessage({
type: 'step',
} as TrainingWorkerMessage);
}
}, []);
const handleExport = useCallback(() => {
if (!population.bestGenomeEver) {
alert('No champion to export yet!');
return;
}
const exported = exportGenome(
population.bestGenomeEver,
DEFAULT_EVOLUTION_CONFIG,
{
generation: stats.generation,
fitness: stats.bestFitnessEver,
speciesCount: stats.speciesCount,
}
);
downloadGenomeAsFile(exported, `neat-champion-gen${stats.generation}.json`);
}, [population.bestGenomeEver, stats]);
const handleImport = useCallback(async () => {
try {
const exported = await uploadGenomeFromFile();
setImportedGenome(exported.genome);
alert(`Imported champion from generation ${exported.metadata?.generation || '?'} with fitness ${exported.metadata?.fitness?.toFixed(1) || '?'}`);
} catch (err) {
alert('Failed to import genome: ' + (err as Error).message);
}
}, []);
return (
<AppContainer title="NEAT Arena">
<div className="neat-arena-layout">
{/* Left Panel: Controls */}
<div className="controls-panel">
<section className="control-section">
<h3>Training Controls</h3>
<div className="control-group">
<button
className={`btn-primary ${isTraining ? 'btn-stop' : 'btn-start'}`}
onClick={() => setIsTraining(!isTraining)}
>
{isTraining ? '⏸ Pause Training' : '▶ Start Training'}
</button>
<button
className="btn-secondary"
onClick={handleStepGeneration}
disabled={isTraining}
>
Step Generation
</button>
<button
className="btn-secondary"
onClick={handleReset}
disabled={isTraining}
>
🔄 Reset
</button>
</div>
<p className="info-text">
{isTraining
? '🟢 Training in background worker...'
: importedGenome
? '🎮 Watching imported champion vs Spinner bot'
: population.bestGenomeEver
? '🎮 Watching champion vs Spinner bot'
: '⚪ No champion yet'}
</p>
</section>
<section className="control-section">
<h3>Evolution Stats</h3>
<div className="stats-grid">
<div className="stat-item">
<span className="stat-label">Generation</span>
<span className="stat-value">{stats.generation}</span>
</div>
<div className="stat-item">
<span className="stat-label">Species</span>
<span className="stat-value">{stats.speciesCount}</span>
</div>
<div className="stat-item">
<span className="stat-label">Best Fitness</span>
<span className="stat-value">{stats.maxFitness.toFixed(1)}</span>
</div>
<div className="stat-item">
<span className="stat-label">Avg Fitness</span>
<span className="stat-value">{stats.avgFitness.toFixed(1)}</span>
</div>
<div className="stat-item">
<span className="stat-label">Champion</span>
<span className="stat-value">{stats.bestFitnessEver.toFixed(1)}</span>
</div>
<div className="stat-item">
<span className="stat-label">Innovations</span>
<span className="stat-value">{stats.totalInnovations}</span>
</div>
</div>
</section>
{fitnessHistory.length > 0 && (
<section className="control-section">
<h3>Fitness Progress</h3>
<FitnessGraph history={fitnessHistory} />
</section>
)}
<section className="control-section">
<h3>Debug Options</h3>
<label className="checkbox-label">
<input
type="checkbox"
checked={showRays}
onChange={(e) => setShowRays(e.target.checked)}
/>
<span>Show Ray Sensors</span>
</label>
</section>
<section className="control-section">
<h3>Export / Import</h3>
<div className="control-group">
<button
className="btn-secondary"
onClick={handleExport}
disabled={!population.bestGenomeEver}
>
💾 Export Champion
</button>
<button
className="btn-secondary"
onClick={handleImport}
>
📂 Import Genome
</button>
</div>
{importedGenome && (
<p className="info-text">
Imported genome loaded
</p>
)}
</section>
<section className="info-section">
<h4>NEAT Arena Status</h4>
<ul>
<li> Deterministic 30Hz simulation</li>
<li> Symmetric procedural maps</li>
<li> Agent physics & bullets</li>
<li> 360° ray sensors (53 inputs)</li>
<li> NEAT evolution with speciation</li>
<li> Self-play training (K=4 matches)</li>
<li> Export/import genomes</li>
<li> Web worker (no UI lag!)</li>
</ul>
</section>
</div>
{/* Right Panel: Phaser Viewer */}
<div className="viewer-panel">
<div
ref={phaserContainerRef}
className="phaser-container"
/>
</div>
</div>
</AppContainer>
);
}

View File

@@ -0,0 +1,386 @@
import { useEffect, useRef, useState, useCallback } from 'react';
import type { Genotype, MapData } from './types';
import { generateMap } from './generator';
import { createRandomGenome, evaluatePopulation, evolve, type Individual, POPULATION_SIZE } from './evolution';
export default function RogueGenApp() {
const [generation, setGeneration] = useState(0);
const [bestFitness, setBestFitness] = useState(0);
const [population, setPopulation] = useState<Genotype[]>([]);
const [bestIndividual, setBestIndividual] = useState<Individual | null>(null);
const [isRunning, setIsRunning] = useState(false);
// Config
const [config, setConfig] = useState({
width: 100,
height: 80,
canvasScale: 4,
simulationSpeed: 100
});
// Targets & Overrides
const [targets, setTargets] = useState({
density: 0.45,
water: 0.15,
lava: 0.05,
veg: 0.20,
minPathLength: 50,
forceTunnels: false,
scaleOverride: 0
});
const canvasRef = useRef<HTMLCanvasElement>(null);
// Initialize
useEffect(() => {
const initPop = [];
for (let i = 0; i < POPULATION_SIZE; i++) initPop.push(createRandomGenome());
setPopulation(initPop);
}, []);
// Evolution Loop
const runGeneration = useCallback(() => {
if (!population.length) return;
// Apply overrides if needed (by modifying genome copy? No, better to pass override context)
// But for simplicity/visuals, we can just hack the population before eval?
// No, that ruins evolution.
// We probably want to visualize the BEST, but FORCE the generation parameters.
// Let's modify evaluatePopulation to handle overrides?
// Or simple hack: Temporarily modify genomes.
const popToEval = population.map(p => {
const copy = { ...p };
if (targets.forceTunnels) copy.noiseType = 1;
if (targets.scaleOverride > 0) copy.noiseScale = targets.scaleOverride;
return copy;
});
const evaluated = evaluatePopulation(popToEval, config.width, config.height, targets);
setBestIndividual(evaluated[0]);
setBestFitness(evaluated[0].fitness.score);
const nextGen = evolve(evaluated);
setPopulation(nextGen);
setGeneration(g => g + 1);
}, [population, config.width, config.height, targets]);
useEffect(() => {
let interval: ReturnType<typeof setInterval>;
if (isRunning) {
interval = setInterval(runGeneration, config.simulationSpeed);
}
return () => clearInterval(interval);
}, [isRunning, runGeneration, config.simulationSpeed]);
// Render Best Map
useEffect(() => {
if (!bestIndividual || !canvasRef.current) return;
const ctx = canvasRef.current.getContext('2d');
if (!ctx) return;
const map = generateMap(bestIndividual.genome, config.width, config.height, targets.minPathLength);
ctx.fillStyle = "#111";
ctx.fillRect(0, 0, config.width * config.canvasScale, config.height * config.canvasScale);
// Draw
for (let y = 0; y < config.height; y++) {
for (let x = 0; x < config.width; x++) {
const val = map.grid[y * config.width + x];
if (val === 1) {
ctx.fillStyle = "#889"; // Wall
ctx.fillRect(x * config.canvasScale, y * config.canvasScale, config.canvasScale, config.canvasScale);
} else if (val === 2) {
ctx.fillStyle = "#48d"; // Water
ctx.fillRect(x * config.canvasScale, y * config.canvasScale, config.canvasScale, config.canvasScale);
} else if (val === 3) {
ctx.fillStyle = "#e44"; // Lava
ctx.fillRect(x * config.canvasScale, y * config.canvasScale, config.canvasScale, config.canvasScale);
} else if (val === 4) {
ctx.fillStyle = "#2a4"; // Veg
ctx.fillRect(x * config.canvasScale, y * config.canvasScale, config.canvasScale, config.canvasScale);
}
}
}
// Draw Start/End
if (map.startPoint && map.endPoint && map.pathLength && map.pathLength > 0) {
// Start
ctx.fillStyle = "#ff0";
ctx.fillRect(map.startPoint.x * config.canvasScale, map.startPoint.y * config.canvasScale, config.canvasScale, config.canvasScale);
// End
ctx.fillStyle = "#f0f";
ctx.fillRect(map.endPoint.x * config.canvasScale, map.endPoint.y * config.canvasScale, config.canvasScale, config.canvasScale);
// Text labels?
ctx.font = '10px monospace';
ctx.fillStyle = "#fff";
ctx.fillText("S", map.startPoint.x * config.canvasScale + 2, map.startPoint.y * config.canvasScale + 8);
ctx.fillText("E", map.endPoint.x * config.canvasScale + 2, map.endPoint.y * config.canvasScale + 8);
}
}, [bestIndividual, config]);
return (
<div className="rogue-gen-app" style={{
display: 'flex',
height: '100%',
background: '#1a1a1a',
color: '#eee',
fontFamily: 'monospace'
}}>
{/* Sidebar Controls */}
<div className="sidebar-panel" style={{
width: '320px',
padding: '20px',
background: '#222',
borderRight: '1px solid #333',
display: 'flex',
flexDirection: 'column',
gap: '20px',
overflowY: 'auto'
}}>
<div style={{ borderBottom: '1px solid #444', paddingBottom: '10px' }}>
<h2 style={{ margin: '0 0 5px 0', fontSize: '1.2em', color: '#88f' }}>Rogue Map Evo</h2>
<div style={{ fontSize: '0.8em', color: '#888' }}>Gen: {generation} | Best: {bestFitness.toFixed(4)}</div>
</div>
<div className="control-group">
<h3 style={{ fontSize: '1em', marginBottom: '10px', color: '#ccc' }}>Controls</h3>
<button
onClick={() => setIsRunning(!isRunning)}
style={{
width: '100%',
padding: '12px',
fontSize: '14px',
fontWeight: 'bold',
background: isRunning ? '#c44' : '#4a4',
color: 'white',
border: 'none',
borderRadius: '4px',
cursor: 'pointer',
marginBottom: '10px'
}}
>
{isRunning ? 'STOP EVOLUTION' : 'START EVOLUTION'}
</button>
<button
onClick={() => {
setGeneration(0);
const initPop = [];
for (let i = 0; i < POPULATION_SIZE; i++) initPop.push(createRandomGenome());
setPopulation(initPop);
setBestIndividual(null);
}}
style={{
width: '100%',
padding: '8px',
background: '#444',
color: '#ccc',
border: '1px solid #555',
borderRadius: '4px',
cursor: 'pointer'
}}
>
Reset Population
</button>
</div>
<div className="control-group">
<h3 style={{ fontSize: '1em', marginBottom: '10px', color: '#ccc' }}>Configuration</h3>
<label style={{ display: 'block', marginBottom: '8px', fontSize: '0.9em' }}>
Map Width: {config.width}
<input
type="range" min="20" max="300" step="10"
value={config.width}
onChange={e => setConfig({ ...config, width: Number(e.target.value) })}
style={{ width: '100%', accentColor: '#88f' }}
/>
</label>
<label style={{ display: 'block', marginBottom: '8px', fontSize: '0.9em' }}>
Map Height: {config.height}
<input
type="range" min="20" max="300" step="10"
value={config.height}
onChange={e => setConfig({ ...config, height: Number(e.target.value) })}
style={{ width: '100%', accentColor: '#88f' }}
/>
</label>
<label style={{ display: 'block', marginBottom: '8px', fontSize: '0.9em' }}>
Zoom: {config.canvasScale}x
<input
type="range" min="1" max="20" step="1"
value={config.canvasScale}
onChange={e => setConfig({ ...config, canvasScale: Number(e.target.value) })}
style={{ width: '100%', accentColor: '#88f' }}
/>
</label>
<label style={{ display: 'block', marginBottom: '8px', fontSize: '0.9em' }}>
Speed: {config.simulationSpeed}ms
<input
type="range" min="10" max="1000" step="10"
value={config.simulationSpeed}
onChange={e => setConfig({ ...config, simulationSpeed: Number(e.target.value) })}
style={{ width: '100%', accentColor: '#88f' }}
/>
</label>
<h3 style={{ fontSize: '1em', marginBottom: '10px', marginTop: '20px', color: '#ccc' }}>Map Style</h3>
<label style={{ display: 'block', marginBottom: '8px', fontSize: '0.9em', cursor: 'pointer' }}>
<input
type="checkbox"
checked={targets.forceTunnels}
onChange={e => setTargets({ ...targets, forceTunnels: e.target.checked })}
style={{ marginRight: '5px' }}
/>
Force Tunnels (Ridged)
</label>
<label style={{ display: 'block', marginBottom: '8px', fontSize: '0.9em' }}>
Feature Scale: {targets.scaleOverride > 0 ? targets.scaleOverride : 'Auto'}
<input
type="range" min="0" max="50" step="1"
value={targets.scaleOverride}
onChange={e => setTargets({ ...targets, scaleOverride: Number(e.target.value) })}
style={{ width: '100%', accentColor: '#aaa' }}
/>
<div style={{ fontSize: '0.8em', color: '#666' }}>(0 = Evolve Scale)</div>
</label>
<h3 style={{ fontSize: '1em', marginBottom: '10px', marginTop: '20px', color: '#ccc' }}>Terrain Targets</h3>
<label style={{ display: 'block', marginBottom: '8px', fontSize: '0.9em' }}>
Open Space: {(targets.density * 100).toFixed(0)}%
<input
type="range" min="0.1" max="0.9" step="0.05"
value={targets.density}
onChange={e => setTargets({ ...targets, density: Number(e.target.value) })}
style={{ width: '100%', accentColor: '#aaa' }}
/>
</label>
<label style={{ display: 'block', marginBottom: '8px', fontSize: '0.9em', color: '#48d' }}>
Water: {(targets.water * 100).toFixed(0)}%
<input
type="range" min="0" max="0.5" step="0.05"
value={targets.water}
onChange={e => setTargets({ ...targets, water: Number(e.target.value) })}
style={{ width: '100%', accentColor: '#48d' }}
/>
</label>
<label style={{ display: 'block', marginBottom: '8px', fontSize: '0.9em', color: '#e44' }}>
Lava: {(targets.lava * 100).toFixed(0)}%
<input
type="range" min="0" max="0.5" step="0.05"
value={targets.lava}
onChange={e => setTargets({ ...targets, lava: Number(e.target.value) })}
style={{ width: '100%', accentColor: '#e44' }}
/>
</label>
<label style={{ display: 'block', marginBottom: '8px', fontSize: '0.9em', color: '#2a4' }}>
Veg: {(targets.veg * 100).toFixed(0)}%
<input
type="range" min="0" max="0.8" step="0.05"
value={targets.veg}
onChange={e => setTargets({ ...targets, veg: Number(e.target.value) })}
style={{ width: '100%', accentColor: '#2a4' }}
/>
</label>
<label style={{ display: 'block', marginBottom: '8px', fontSize: '0.9em', color: '#fa4' }}>
Min Path: {targets.minPathLength} tiles
<input
type="range" min="0" max="1000" step="5"
value={targets.minPathLength}
onChange={e => setTargets({ ...targets, minPathLength: Number(e.target.value) })}
style={{ width: '100%', accentColor: '#fa4' }}
/>
</label>
</div>
{bestIndividual && (
<div className="stats-panel" style={{
background: '#111',
padding: '10px',
borderRadius: '4px',
fontSize: '0.85em',
border: '1px solid #333'
}}>
<h4 style={{ margin: '0 0 10px 0', color: '#aaa' }}>Best Genome (Wall)</h4>
<div style={{ display: 'grid', gridTemplateColumns: '1fr 1fr', gap: '5px', marginBottom: '10px' }}>
<div>Init P:</div><div style={{ textAlign: 'right', color: '#8f8' }}>{bestIndividual.genome.initialChance.toFixed(2)}</div>
<div>Birth:</div><div style={{ textAlign: 'right', color: '#8f8' }}>{bestIndividual.genome.birthLimit}</div>
<div>Death:</div><div style={{ textAlign: 'right', color: '#8f8' }}>{bestIndividual.genome.deathLimit}</div>
<div>Steps:</div><div style={{ textAlign: 'right', color: '#8f8' }}>{bestIndividual.genome.steps}</div>
<div>Smooth:</div><div style={{ textAlign: 'right', color: '#8f8' }}>{bestIndividual.genome.smoothingSteps}</div>
<div>Cleanup:</div><div style={{ textAlign: 'right', color: '#8f8' }}>{bestIndividual.genome.noiseReduction ? 'Yes' : 'No'}</div>
</div>
<h4 style={{ margin: '0 0 10px 0', color: '#aaa' }}>Best Genome (Water/Lava/Veg)</h4>
<div style={{ display: 'grid', gridTemplateColumns: '1fr 1fr 1fr', gap: '5px', fontSize: '0.8em' }}>
<div style={{ color: '#48d' }}>WATER</div>
<div style={{ color: '#e44' }}>LAVA</div>
<div style={{ color: '#2a4' }}>VEG</div>
<div style={{ color: '#ccc' }}>{bestIndividual.genome.waterInitialChance.toFixed(2)}</div>
<div style={{ color: '#ccc' }}>{bestIndividual.genome.lavaInitialChance.toFixed(2)}</div>
<div style={{ color: '#ccc' }}>{bestIndividual.genome.vegInitialChance.toFixed(2)}</div>
<div style={{ color: '#666' }}>Steps</div>
<div style={{ color: '#666' }}>Steps</div>
<div style={{ color: '#666' }}>Steps</div>
<div style={{ color: '#ccc' }}>{bestIndividual.genome.waterSteps}</div>
<div style={{ color: '#ccc' }}>{bestIndividual.genome.lavaSteps}</div>
<div style={{ color: '#ccc' }}>{bestIndividual.genome.vegSteps}</div>
</div>
<h4 style={{ margin: '10px 0 5px 0', color: '#aaa' }}>Structure</h4>
<div style={{ display: 'grid', gridTemplateColumns: '1fr 1fr', gap: '5px' }}>
<div>Noise:</div><div style={{ textAlign: 'right', color: '#ccc' }}>{bestIndividual.genome.useNoise ? (bestIndividual.genome.noiseType === 1 ? 'Tunnel' : 'Blob') : 'No'}</div>
<div>Scale:</div><div style={{ textAlign: 'right', color: '#ccc' }}>{bestIndividual.genome.noiseScale.toFixed(1)}</div>
<div>Rooms:</div><div style={{ textAlign: 'right', color: '#ccc' }}>{bestIndividual.genome.useRooms ? bestIndividual.genome.roomCount : 'No'}</div>
</div>
<hr style={{ borderColor: '#333', margin: '10px 0' }} />
<h4 style={{ margin: '0 0 10px 0', color: '#aaa' }}>Metrics</h4>
<div style={{ display: 'grid', gridTemplateColumns: '1fr 1fr', gap: '5px' }}>
<div>Connect:</div><div style={{ textAlign: 'right', color: '#fa4' }}>{(bestIndividual.fitness.connectivity * 100).toFixed(1)}%</div>
<div>Density:</div><div style={{ textAlign: 'right', color: '#fa4' }}>{(bestIndividual.fitness.density * 100).toFixed(1)}%</div>
<div>Path:</div><div style={{ textAlign: 'right', color: '#ff0' }}>{generateMap(bestIndividual.genome, config.width, config.height).pathLength}</div>
</div>
</div>
)}
</div>
{/* Main Visualization */}
<div className="visualization-area" style={{
flex: 1,
display: 'flex',
justifyContent: 'center',
alignItems: 'center',
background: '#0d0d0d',
overflow: 'auto',
padding: '20px'
}}>
<div style={{
border: '5px solid #333',
borderRadius: '4px',
boxShadow: '0 0 20px rgba(0,0,0,0.5)',
lineHeight: 0
}}>
<canvas
ref={canvasRef}
width={config.width * config.canvasScale}
height={config.height * config.canvasScale}
/>
</div>
</div>
</div>
);
}

View File

@@ -0,0 +1,155 @@
import type { Genotype } from './types';
import { generateMap } from './generator';
import { calculateFitness, type FitnessResult, type FitnessTargets } from './fitness';
export interface Individual {
genome: Genotype;
fitness: FitnessResult;
}
export const POPULATION_SIZE = 50;
const MUTATION_RATE = 0.1;
export function createRandomGenome(): Genotype {
return {
initialChance: Math.random(), // 0.0 - 1.0
birthLimit: Math.floor(Math.random() * 8) + 1, // 1-8
deathLimit: Math.floor(Math.random() * 8) + 1, // 1-8
steps: Math.floor(Math.random() * 7) + 3, // 3-10 (Forced minimum steps to prevent static)
smoothingSteps: Math.floor(Math.random() * 6), // 0-5
noiseReduction: Math.random() < 0.5,
useNoise: Math.random() < 0.8, // High chance to use noise
noiseType: Math.random() < 0.5 ? 0 : 1, // Random start
noiseScale: Math.random() * 40 + 10, // 10-50
noiseThreshold: Math.random() * 0.4 + 0.3, // 0.3-0.7
useRooms: Math.random() < 0.8, // High chance
roomCount: Math.floor(Math.random() * 15) + 3, // 3-18
roomMinSize: Math.floor(Math.random() * 4) + 3, // 3-7
roomMaxSize: Math.floor(Math.random() * 8) + 8, // 8-16
waterInitialChance: Math.random(),
waterBirthLimit: Math.floor(Math.random() * 8) + 1,
waterDeathLimit: Math.floor(Math.random() * 8) + 1,
waterSteps: Math.floor(Math.random() * 7) + 3, // 3-10
lavaInitialChance: Math.random() * 0.5, // Rare
lavaBirthLimit: Math.floor(Math.random() * 8) + 1,
lavaDeathLimit: Math.floor(Math.random() * 8) + 1,
lavaSteps: Math.floor(Math.random() * 7) + 3, // 3-10
vegInitialChance: Math.random(),
vegBirthLimit: Math.floor(Math.random() * 8) + 1,
vegDeathLimit: Math.floor(Math.random() * 8) + 1,
vegSteps: Math.floor(Math.random() * 7) + 3 // 3-10
};
}
export function evaluatePopulation(population: Genotype[], width: number, height: number, targets: FitnessTargets): Individual[] {
return population.map(genome => {
const map = generateMap(genome, width, height, targets.minPathLength);
const fitness = calculateFitness(map, targets);
return { genome, fitness };
}).sort((a, b) => b.fitness.score - a.fitness.score);
}
export function evolve(population: Individual[]): Genotype[] {
const newPop: Genotype[] = [];
// Elitism: Keep top 2
newPop.push(population[0].genome);
newPop.push(population[1].genome);
while (newPop.length < POPULATION_SIZE) {
const p1 = tournamentSelect(population);
const p2 = tournamentSelect(population);
const child = crossover(p1.genome, p2.genome);
mutate(child);
newPop.push(child);
}
return newPop;
}
function tournamentSelect(pop: Individual[]): Individual {
const k = 3;
let best = pop[Math.floor(Math.random() * pop.length)];
for (let i = 0; i < k - 1; i++) {
const cand = pop[Math.floor(Math.random() * pop.length)];
if (cand.fitness.score > best.fitness.score) {
best = cand;
}
}
return best;
}
function crossover(p1: Genotype, p2: Genotype): Genotype {
return {
initialChance: Math.random() < 0.5 ? p1.initialChance : p2.initialChance,
birthLimit: Math.random() < 0.5 ? p1.birthLimit : p2.birthLimit,
deathLimit: Math.random() < 0.5 ? p1.deathLimit : p2.deathLimit,
steps: Math.random() < 0.5 ? p1.steps : p2.steps,
smoothingSteps: Math.random() < 0.5 ? p1.smoothingSteps : p2.smoothingSteps,
noiseReduction: Math.random() < 0.5 ? p1.noiseReduction : p2.noiseReduction,
useNoise: Math.random() < 0.5 ? p1.useNoise : p2.useNoise,
noiseType: Math.random() < 0.5 ? p1.noiseType : p2.noiseType,
noiseScale: Math.random() < 0.5 ? p1.noiseScale : p2.noiseScale,
noiseThreshold: Math.random() < 0.5 ? p1.noiseThreshold : p2.noiseThreshold,
useRooms: Math.random() < 0.5 ? p1.useRooms : p2.useRooms,
roomCount: Math.random() < 0.5 ? p1.roomCount : p2.roomCount,
roomMinSize: Math.random() < 0.5 ? p1.roomMinSize : p2.roomMinSize,
roomMaxSize: Math.random() < 0.5 ? p1.roomMaxSize : p2.roomMaxSize,
waterInitialChance: Math.random() < 0.5 ? p1.waterInitialChance : p2.waterInitialChance,
waterBirthLimit: Math.random() < 0.5 ? p1.waterBirthLimit : p2.waterBirthLimit,
waterDeathLimit: Math.random() < 0.5 ? p1.waterDeathLimit : p2.waterDeathLimit,
waterSteps: Math.random() < 0.5 ? p1.waterSteps : p2.waterSteps,
lavaInitialChance: Math.random() < 0.5 ? p1.lavaInitialChance : p2.lavaInitialChance,
lavaBirthLimit: Math.random() < 0.5 ? p1.lavaBirthLimit : p2.lavaBirthLimit,
lavaDeathLimit: Math.random() < 0.5 ? p1.lavaDeathLimit : p2.lavaDeathLimit,
lavaSteps: Math.random() < 0.5 ? p1.lavaSteps : p2.lavaSteps,
vegInitialChance: Math.random() < 0.5 ? p1.vegInitialChance : p2.vegInitialChance,
vegBirthLimit: Math.random() < 0.5 ? p1.vegBirthLimit : p2.vegBirthLimit,
vegDeathLimit: Math.random() < 0.5 ? p1.vegDeathLimit : p2.vegDeathLimit,
vegSteps: Math.random() < 0.5 ? p1.vegSteps : p2.vegSteps,
};
}
function mutate(g: Genotype) {
if (Math.random() < MUTATION_RATE) g.initialChance = Math.max(0, Math.min(1, g.initialChance + (Math.random() - 0.5) * 0.1));
if (Math.random() < MUTATION_RATE) g.birthLimit = Math.max(1, Math.min(8, Math.floor(g.birthLimit + (Math.random() - 0.5) * 4)));
if (Math.random() < MUTATION_RATE) g.deathLimit = Math.max(1, Math.min(8, Math.floor(g.deathLimit + (Math.random() - 0.5) * 4)));
if (Math.random() < MUTATION_RATE) g.steps = Math.max(3, Math.min(10, Math.floor(g.steps + (Math.random() - 0.5) * 4)));
if (Math.random() < MUTATION_RATE) g.smoothingSteps = Math.max(0, Math.min(5, Math.floor(g.smoothingSteps + (Math.random() - 0.5) * 3)));
if (Math.random() < MUTATION_RATE) g.noiseReduction = !g.noiseReduction;
if (Math.random() < MUTATION_RATE) g.useNoise = !g.useNoise;
if (Math.random() < MUTATION_RATE) g.noiseType = g.noiseType === 0 ? 1 : 0;
if (Math.random() < MUTATION_RATE) g.noiseScale = Math.max(5, Math.min(80, g.noiseScale + (Math.random() - 0.5) * 5));
if (Math.random() < MUTATION_RATE) g.noiseThreshold = Math.max(0.1, Math.min(0.9, g.noiseThreshold + (Math.random() - 0.5) * 0.1));
if (Math.random() < MUTATION_RATE) g.useRooms = !g.useRooms;
if (Math.random() < MUTATION_RATE) g.roomCount = Math.max(0, Math.min(25, Math.floor(g.roomCount + (Math.random() - 0.5) * 3)));
if (Math.random() < MUTATION_RATE) g.roomMinSize = Math.max(3, Math.min(10, Math.floor(g.roomMinSize + (Math.random() - 0.5) * 2)));
if (Math.random() < MUTATION_RATE) g.roomMaxSize = Math.max(5, Math.min(20, Math.floor(g.roomMaxSize + (Math.random() - 0.5) * 2)));
if (Math.random() < MUTATION_RATE) g.waterInitialChance = Math.max(0, Math.min(1, g.waterInitialChance + (Math.random() - 0.5) * 0.1));
if (Math.random() < MUTATION_RATE) g.waterBirthLimit = Math.max(1, Math.min(8, Math.floor(g.waterBirthLimit + (Math.random() - 0.5) * 4)));
if (Math.random() < MUTATION_RATE) g.waterDeathLimit = Math.max(1, Math.min(8, Math.floor(g.waterDeathLimit + (Math.random() - 0.5) * 4)));
if (Math.random() < MUTATION_RATE) g.waterSteps = Math.max(3, Math.min(10, Math.floor(g.waterSteps + (Math.random() - 0.5) * 4)));
if (Math.random() < MUTATION_RATE) g.lavaInitialChance = Math.max(0, Math.min(1, g.lavaInitialChance + (Math.random() - 0.5) * 0.1));
if (Math.random() < MUTATION_RATE) g.lavaBirthLimit = Math.max(1, Math.min(8, Math.floor(g.lavaBirthLimit + (Math.random() - 0.5) * 4)));
if (Math.random() < MUTATION_RATE) g.lavaDeathLimit = Math.max(1, Math.min(8, Math.floor(g.lavaDeathLimit + (Math.random() - 0.5) * 4)));
if (Math.random() < MUTATION_RATE) g.lavaSteps = Math.max(3, Math.min(10, Math.floor(g.lavaSteps + (Math.random() - 0.5) * 4)));
if (Math.random() < MUTATION_RATE) g.vegInitialChance = Math.max(0, Math.min(1, g.vegInitialChance + (Math.random() - 0.5) * 0.1));
if (Math.random() < MUTATION_RATE) g.vegBirthLimit = Math.max(1, Math.min(8, Math.floor(g.vegBirthLimit + (Math.random() - 0.5) * 4)));
if (Math.random() < MUTATION_RATE) g.vegDeathLimit = Math.max(1, Math.min(8, Math.floor(g.vegDeathLimit + (Math.random() - 0.5) * 4)));
if (Math.random() < MUTATION_RATE) g.vegSteps = Math.max(3, Math.min(10, Math.floor(g.vegSteps + (Math.random() - 0.5) * 4)));
}

View File

@@ -0,0 +1,214 @@
import type { MapData } from './types';
export interface FitnessResult {
score: number;
connectivity: number;
density: number;
}
export interface FitnessTargets {
density: number;
water: number;
lava: number;
veg: number;
minPathLength: number; // New param
}
export function calculateFitness(map: MapData, targets: FitnessTargets): FitnessResult {
const { grid, width, height } = map;
let totalFloor = 0;
let totalWater = 0;
let totalLava = 0;
let totalVeg = 0;
// 1. Calculate Density (Target 45% floor - configurable)
// 1. Calculate Density (Target 45% floor - configurable)
for (let y = 0; y < height; y++) {
for (let x = 0; x < width; x++) {
const t = grid[y * width + x];
if (t === 0) totalFloor++;
else if (t === 2) totalWater++;
else if (t === 3) totalLava++;
else if (t === 4) totalVeg++;
}
}
// "Open Space" = anything not a wall
const totalOpen = totalFloor + totalWater + totalLava + totalVeg;
const totalCells = width * height;
// Target Open Space (inverse of Wall Density?)
// Usually Density = Wall Density.
// If target is "Floor Density" (open space), we use targets.density directly.
// Let's assume targets.density = Target Open Space %.
const openDensity = totalOpen / totalCells;
const densityScore = 1 - Math.abs(openDensity - targets.density) * 2;
// Ratios within Open Space
if (totalOpen === 0) return { score: 0, connectivity: 0, density: 0 };
const waterRatio = totalWater / totalOpen;
const lavaRatio = totalLava / totalOpen;
const vegRatio = totalVeg / totalOpen;
const waterScore = 1 - Math.abs(waterRatio - targets.water) * 3;
const lavaScore = 1 - Math.abs(lavaRatio - targets.lava) * 5;
const vegScore = 1 - Math.abs(vegRatio - targets.veg) * 3;
// 2. Connectivity (Largest Flood Fill on WALKABLE tiles)
const walkableCells = totalFloor + totalVeg;
if (walkableCells === 0) {
return { score: 0, connectivity: 0, density: openDensity };
}
const visited = new Uint8Array(width * height);
let maxConnected = 0;
for (let y = 0; y < height; y++) {
for (let x = 0; x < width; x++) {
// Start flood fill on a walkable tile
const idx = y * width + x;
const tile = grid[idx];
// Check flat visited array
if ((tile === 0 || tile === 4) && visited[idx] === 0) {
const size = floodFill(grid, x, y, visited, width);
if (size > maxConnected) {
maxConnected = size;
}
}
}
}
const connectivity = maxConnected / walkableCells;
// Composite Score
let score = (connectivity * 0.4) +
(densityScore * 0.2) +
(waterScore * 0.1) +
(lavaScore * 0.15) +
(vegScore * 0.15);
if (connectivity < 0.5) score *= 0.1;
// Bonus for hitting targets closely if target > 0
// Bonus for hitting targets closely if target > 0
if (targets.lava > 0 && lavaRatio >= targets.lava * 0.8) score += 0.05;
if (targets.veg > 0 && vegRatio >= targets.veg * 0.8) score += 0.05;
// 3. Clumping Score (Avoid Static Noise)
// Check neighbors. If many neighbors are same type, good.
let sameNeighborCount = 0;
let totalChecks = 0;
for (let y = 1; y < height - 1; y += 2) { // Optimization: check every other pixel
for (let x = 1; x < width - 1; x += 2) {
const idx = y * width + x;
const self = grid[idx];
totalChecks++;
// extensive neighbor check
let localSame = 0;
if (grid[(y+1)*width + x] === self) localSame++;
if (grid[(y-1)*width + x] === self) localSame++;
if (grid[y*width + (x+1)] === self) localSame++;
if (grid[y*width + (x-1)] === self) localSame++;
if (localSame >= 2) sameNeighborCount++;
}
}
// Reward clumping strongly
const clumpingScore = totalChecks > 0 ? sameNeighborCount / totalChecks : 0;
score += clumpingScore * 0.3; // Significant bonus for non-noisy maps
// 4. Path Length Score
// If map.pathLength < minPathLength, penalize.
if (map.pathLength !== undefined && targets.minPathLength > 0) {
if (map.pathLength < targets.minPathLength) {
// Linear penalty? Or exponential?
// e.g. target 50. Actual 25. Score 0.5.
const ratio = map.pathLength / targets.minPathLength;
score *= ratio; // Hard penalty on everything if path is too short
} else {
score += 0.1; // Bonus for meeting criteria
}
}
return { score, connectivity, density: openDensity };
}
function floodFill(grid: Uint8Array, startX: number, startY: number, visited: Uint8Array, width: number): number {
let count = 0;
// Stack of coordinate pairs (packed or objects? Objects are slow. Let's use two stacks or one packed stack)
// Packed integer stack: y * width + x
const stack = [startY * width + startX];
// Mark visited
visited[startY * width + startX] = 1;
count++;
while (stack.length > 0) {
const packed = stack.pop()!;
const cx = packed % width;
const cy = Math.floor(packed / width);
// Inline neighbors for speed
// N
if (cy > 0) {
const ny = cy - 1;
const idx = ny * width + cx;
if (visited[idx] === 0) {
const t = grid[ny * width + cx];
if (t === 0 || t === 4) {
visited[idx] = 1;
stack.push(idx);
count++;
}
}
}
// S
const height = grid.length / width;
if (cy < height - 1) {
const ny = cy + 1;
const idx = ny * width + cx;
if (visited[idx] === 0) {
const t = grid[ny * width + cx];
if (t === 0 || t === 4) {
visited[idx] = 1;
stack.push(idx);
count++;
}
}
}
// W
if (cx > 0) {
const nx = cx - 1;
const idx = cy * width + nx;
if (visited[idx] === 0) {
const t = grid[cy * width + nx];
if (t === 0 || t === 4) {
visited[idx] = 1;
stack.push(idx);
count++;
}
}
}
// E
if (cx < width - 1) {
const nx = cx + 1;
const idx = cy * width + nx;
if (visited[idx] === 0) {
const t = grid[cy * width + nx];
if (t === 0 || t === 4) {
visited[idx] = 1;
stack.push(idx);
count++;
}
}
}
}
return count;
}

View File

@@ -0,0 +1,655 @@
import type { Genotype, MapData } from './types';
import { Perlin } from './perlin';
// Initialize Perlin once (or per gen? per gen better for seed, but instance is cheap)
// Actually we want random noise every time, Perlin class randomizes on init.
export function generateMap(genome: Genotype, width: number, height: number, minPathLength: number = 0): MapData {
let map = new Uint8Array(width * height);
// --- Step 1: Initialization (Noise vs Random) ---
if (genome.useNoise) {
const perlin = new Perlin();
const scale = genome.noiseScale || 20;
const threshold = genome.noiseThreshold || 0.45;
for (let y = 0; y < height; y++) {
for (let x = 0; x < width; x++) {
const idx = y * width + x;
// Edges always walls
if (x === 0 || x === width - 1 || y === 0 || y === height - 1) {
map[idx] = 1;
continue;
}
// Noise value -1 to 1 usually
const value = perlin.noise(x / scale, y / scale, 0);
let isEmpty = false;
if (genome.noiseType === 1) {
// Tunnel Mode (Ridged): Empty space near 0
const tunnelWidth = genome.noiseThreshold * 0.5; // Scale down for thinner tunnels
if (Math.abs(value) < tunnelWidth) isEmpty = true;
} else {
// Blob Mode (Standard)
const norm = (value + 1) / 2;
if (norm >= threshold) isEmpty = true;
}
if (!isEmpty) map[idx] = 1; // Wall
else map[idx] = 0; // Floor
}
}
} else {
// Legacy Random Init
for (let y = 0; y < height; y++) {
for (let x = 0; x < width; x++) {
const idx = y * width + x;
if (x === 0 || x === width - 1 || y === 0 || y === height - 1) {
map[idx] = 1;
} else {
map[idx] = Math.random() < genome.initialChance ? 1 : 0;
}
}
}
}
// --- Step 2: Room Injection ---
if (genome.useRooms) {
const count = genome.roomCount;
const min = genome.roomMinSize;
const max = genome.roomMaxSize;
for(let i=0; i<count; i++) {
const w = Math.floor(Math.random() * (max - min + 1)) + min;
const h = Math.floor(Math.random() * (max - min + 1)) + min;
const x = Math.floor(Math.random() * (width - w - 2)) + 1;
const y = Math.floor(Math.random() * (height - h - 2)) + 1;
// Stamp Room (Floor 0)
for(let ry = 0; ry < h; ry++) {
for(let rx = 0; rx < w; rx++) {
if (y+ry < height-1 && x+rx < width-1) {
map[(y+ry)*width + (x+rx)] = 0;
}
}
}
}
}
// --- Step 3: Cellular Automata ---
// Double buffer allocation ONCE
let buffer = new Uint8Array(width * height);
for (let s = 0; s < genome.steps; s++) {
// Copy map to buffer? Or just read from map write to buffer?
// Must handle edges.
// Optimization: Just swap references.
// Read from 'map', write to 'buffer'.
for (let y = 0; y < height; y++) {
for (let x = 0; x < width; x++) {
const idx = y * width + x;
if (x === 0 || x === width - 1 || y === 0 || y === height - 1) {
buffer[idx] = 1;
continue;
}
const neighbors = countNeighbors(map, width, height, x, y, 1);
if (map[idx] === 1) {
// Wall logic
if (neighbors < genome.deathLimit) buffer[idx] = 0;
else buffer[idx] = 1;
} else {
// Floor logic
if (neighbors > genome.birthLimit) buffer[idx] = 1;
else buffer[idx] = 0;
}
}
}
// Swap
let temp = map;
map = buffer;
buffer = temp;
}
// Smoothing steps
for (let s = 0; s < genome.smoothingSteps; s++) {
for (let y = 0; y < height; y++) {
for (let x = 0; x < width; x++) {
const idx = y * width + x;
if (x === 0 || x === width - 1 || y === 0 || y === height - 1) {
buffer[idx] = 1;
continue;
}
const neighbors = countNeighbors(map, width, height, x, y, 1);
if (neighbors > 4) buffer[idx] = 1;
else if (neighbors < 4) buffer[idx] = 0;
else buffer[idx] = map[idx];
}
}
let temp = map;
map = buffer;
buffer = temp;
}
// Noise Reduction
if (genome.noiseReduction) {
buffer.set(map);
for (let y = 1; y < height - 1; y++) {
for (let x = 1; x < width - 1; x++) {
const idx = y * width + x;
if (map[idx] === 1) {
if (countNeighbors(map, width, height, x, y, 1) <= 1) {
buffer[idx] = 0;
}
}
}
}
let temp = map;
map = buffer;
buffer = temp;
}
// --- Lava Layer Generation (Priority 2) ---
let lavaMap = runCASimulation(width, height, genome.lavaInitialChance, genome.lavaSteps, genome.lavaBirthLimit, genome.lavaDeathLimit, map, [1]);
applyLayer(map, lavaMap, 3); // 3 = Lava
// --- Water Layer Generation (Priority 3) ---
let waterMap = runCASimulation(width, height, genome.waterInitialChance, genome.waterSteps, genome.waterBirthLimit, genome.waterDeathLimit, map, [1, 3]);
applyLayer(map, waterMap, 2); // 2 = Water
// --- Vegetation Layer Generation (Priority 4) ---
let vegMap = runCASimulation(width, height, genome.vegInitialChance, genome.vegSteps, genome.vegBirthLimit, genome.vegDeathLimit, map, [1, 2, 3]);
applyLayer(map, vegMap, 4); // 4 = Veg
// --- Step 4b: Post-Processing (Bridge Building with Pruning and Wobble) ---
connectRegions(map, width, height);
// --- Step 5: Start & Exit Points ---
// Strategy:
// 1. Try Random Valid Path strategy (random start, random end > minPathLength)
// 2. If that fails (or no minPathLength given), FALLBACK to Double BFS (Diameter) to maximize path.
let finalStart = {x:0, y:0};
let finalEnd = {x:0, y:0};
let pathDist = 0;
let found = false;
// Use minPathLength or fallback heuristic
const targetDist = minPathLength > 0 ? minPathLength : Math.max(width, height) * 0.4;
// ATTEMPT 1: Random Points (Variety)
for(let attempt=0; attempt<10; attempt++) {
// 1. Pick random start
let startX = -1, startY = -1;
let tries = 0;
while(tries < 50) {
const rx = Math.floor(Math.random() * (width - 2)) + 1;
const ry = Math.floor(Math.random() * (height - 2)) + 1;
const t = map[ry*width+rx];
if (t === 0 || t === 4) { // Floor/Veg
startX = rx; startY = ry;
break;
}
tries++;
}
if (startX === -1) continue;
// 2. BFS Flood to find candidates
const dists = bfsFlood(map, width, height, startX, startY);
const candidates = [];
for(let y=1; y<height-1; y++) {
for(let x=1; x<width-1; x++) {
const d = dists[y*width+x];
if (d >= targetDist) { // Strict GE check
candidates.push({x, y, dist: d});
}
}
}
if (candidates.length > 0) {
// Found at least one good path!
const chosen = candidates[Math.floor(Math.random() * candidates.length)];
finalStart = {x: startX, y: startY};
finalEnd = {x: chosen.x, y: chosen.y};
pathDist = chosen.dist;
found = true;
break;
}
}
// ATTEMPT 2: Fallback to Diameter (Reliability)
// If we couldn't find a random path > targetDist (maybe target is too high, or we got unlucky),
// we MUST try to find the longest possible path to show the user the "best" this map can do.
if (!found) {
// 1. Pick any valid point
let startX = -1, startY = -1;
outer2: for(let y=1; y<height-1; y++) {
for(let x=1; x<width-1; x++) {
if (map[y*width+x] === 0 || map[y*width+x] === 4) {
startX = x; startY = y;
break outer2;
}
}
}
if (startX !== -1) {
// 2. Find furthest from A -> B
const pB = bfsFurthest(map, width, height, startX, startY);
// 3. Find furthest from B -> C (Approximates Diameter)
const pC = bfsFurthest(map, width, height, pB.x, pB.y);
finalStart = {x: pB.x, y: pB.y};
finalEnd = {x: pC.x, y: pC.y};
pathDist = pC.dist;
}
}
return {
grid: map,
width,
height,
startPoint: finalStart,
endPoint: finalEnd,
pathLength: pathDist
};
}
// Simple BFS Flood returning distances array
function bfsFlood(grid: Uint8Array, width: number, height: number, startX: number, startY: number): Int32Array {
const dists = new Int32Array(width * height).fill(-1);
const queue = [startY * width + startX];
dists[startY * width + startX] = 0;
let head = 0;
while(head < queue.length) {
const packed = queue[head++];
const cx = packed % width;
const cy = Math.floor(packed / width);
const d = dists[packed];
// Inline neighbors
const nOffsets = [-width, width, -1, 1]; // N, S, W, E
for(let i=0; i<4; i++) {
const idx = packed + nOffsets[i]; // Be careful of edges?
// Ideally we check bounds. But since perimeter is always wall (1),
// we technically won't escape if we trust the wall.
// BUT, index could wrap if we are at x=width-1 and do +1 -> next row x=0.
// Safer to do coord check.
let nx = cx, ny = cy;
if (i===0) ny--;
else if (i===1) ny++;
else if (i===2) nx--;
else if (i===3) nx++;
if (nx >= 0 && nx < width && ny >= 0 && ny < height) {
const nIdx = ny * width + nx;
if (dists[nIdx] === -1) {
const t = grid[nIdx];
if (t === 0 || t === 4) { // Walkable
dists[nIdx] = d + 1;
queue.push(nIdx);
}
}
}
}
}
return dists;
}
// Helper to run a CA simulation for a feature layer
function runCASimulation(width: number, height: number, initialChance: number, steps: number, birth: number, death: number, baseMap: Uint8Array, forbiddenTiles: number[]): Uint8Array {
let layer = new Uint8Array(width * height);
// Initialize
for (let y = 0; y < height; y++) {
for (let x = 0; x < width; x++) {
const idx = y * width + x;
if (forbiddenTiles.includes(baseMap[idx])) {
layer[idx] = 0;
} else {
layer[idx] = Math.random() < initialChance ? 1 : 0;
}
}
}
let buffer = new Uint8Array(width * height);
// Run Steps
for (let s = 0; s < steps; s++) {
for (let y = 0; y < height; y++) {
for (let x = 0; x < width; x++) {
const idx = y * width + x;
if (forbiddenTiles.includes(baseMap[idx])) {
buffer[idx] = 0; // Ensure forbidden stays empty
continue;
}
// Edges
if (x === 0 || x === width - 1 || y === 0 || y === height - 1) {
buffer[idx] = 1; // Or 0? Features usually unbound. Let's say 0.
continue;
}
// Count neighbors of THIS layer (1s)
const neighbors = countNeighbors(layer, width, height, x, y, 1);
if (layer[idx] === 1) {
if (neighbors < death) buffer[idx] = 0;
else buffer[idx] = 1;
} else {
if (neighbors > birth) buffer[idx] = 1;
else buffer[idx] = 0;
}
}
}
// Swap
let temp = layer;
layer = buffer;
buffer = temp;
}
return layer;
}
function applyLayer(baseMap: Uint8Array, layer: Uint8Array, typeId: number) {
for (let i = 0; i < baseMap.length; i++) {
if (layer[i] === 1) {
if (baseMap[i] === 0) {
baseMap[i] = typeId;
}
}
}
}
// BFS to find all connected regions of walkable tiles
function getRegions(map: Uint8Array, width: number, height: number): {points: {x:number, y:number}[], id: number}[] {
const visited = new Uint8Array(width * height);
const regions = [];
let regionId = 0;
for (let y = 1; y < height - 1; y++) {
for (let x = 1; x < width - 1; x++) {
const idx = y * width + x;
// Walkable: 0 (Floor) or 4 (Veg)
if ((map[idx] === 0 || map[idx] === 4) && visited[idx] === 0) {
const points = [];
// Packed stack (DFS)
const stack = [idx];
visited[idx] = 1;
points.push({x, y});
while(stack.length > 0) {
const packed = stack.pop()!;
const cx = packed % width;
const cy = Math.floor(packed / width);
// Neighbors
// N
if (cy > 0) {
const ny = cy - 1; const nx = cx;
const nIdx = ny * width + nx;
if (visited[nIdx] === 0) {
const t = map[nIdx];
if (t === 0 || t === 4) {
visited[nIdx] = 1;
points.push({x:nx, y:ny});
stack.push(nIdx);
}
}
}
// S
if (cy < height - 1) {
const ny = cy + 1; const nx = cx;
const nIdx = ny * width + nx;
if (visited[nIdx] === 0) {
const t = map[nIdx];
if (t === 0 || t === 4) {
visited[nIdx] = 1;
points.push({x:nx, y:ny});
stack.push(nIdx);
}
}
}
// W
if (cx > 0) {
const ny = cy; const nx = cx - 1;
const nIdx = ny * width + nx;
if (visited[nIdx] === 0) {
const t = map[nIdx];
if (t === 0 || t === 4) {
visited[nIdx] = 1;
points.push({x:nx, y:ny});
stack.push(nIdx);
}
}
}
// E
if (cx < width - 1) {
const ny = cy; const nx = cx + 1;
const nIdx = ny * width + nx;
if (visited[nIdx] === 0) {
const t = map[nIdx];
if (t === 0 || t === 4) {
visited[nIdx] = 1;
points.push({x:nx, y:ny});
stack.push(nIdx);
}
}
}
}
regions.push({points, id: regionId++});
}
}
}
return regions;
}
function connectRegions(map: Uint8Array, width: number, height: number) {
let regions = getRegions(map, width, height);
// PRUNING: Remove tiny regions (noise artifacts)
const PRUNE_SIZE = 12;
for (let i = regions.length - 1; i >= 0; i--) {
if (regions[i].points.length < PRUNE_SIZE) {
// Fill with wall
for(const p of regions[i].points) {
map[p.y * width + p.x] = 1;
}
regions.splice(i, 1);
}
}
if (regions.length <= 1) return;
// Sort by largest (Main)
regions.sort((a, b) => b.points.length - a.points.length);
const mainRegion = regions[0];
// Connect remaining
for (let i = 1; i < regions.length; i++) {
const region = regions[i];
let minDistance = Infinity;
let startPoint = {x:0, y:0};
let endPoint = {x:0, y:0};
// OPTIMIZATION: Sampling
const sampleSize = 30; // Check 30 random points
const mainSamples = [];
if (mainRegion.points.length > sampleSize) {
for(let k=0; k<sampleSize; k++) {
mainSamples.push(mainRegion.points[Math.floor(Math.random() * mainRegion.points.length)]);
}
} else {
mainSamples.push(...mainRegion.points);
}
const regionSamples = [];
if (region.points.length > sampleSize) {
for(let k=0; k<sampleSize; k++) {
regionSamples.push(region.points[Math.floor(Math.random() * region.points.length)]);
}
} else {
regionSamples.push(...region.points);
}
// Compare samples
for(const pA of mainSamples) {
for(const pB of regionSamples) {
const dist = (pA.x-pB.x)**2 + (pA.y-pB.y)**2;
if (dist < minDistance) {
minDistance = dist;
startPoint = pA;
endPoint = pB;
}
}
}
// Draw bridge - ORGANIC "DRUNKARD'S" LINE
let cursorX = startPoint.x;
let cursorY = startPoint.y;
const dx = endPoint.x - startPoint.x;
const dy = endPoint.y - startPoint.y;
const dist = Math.sqrt(dx*dx + dy*dy);
// Normalize direction
const stepX = dx / dist;
const stepY = dy / dist;
let steps = Math.floor(dist);
for(let s=0; s<=steps; s++) {
// Move generally towards target
cursorX += stepX;
cursorY += stepY;
// Add jitter
const jitter = (Math.random() - 0.5) * 1.5;
const px = Math.floor(cursorX + jitter);
const py = Math.floor(cursorY + jitter);
// Carve with brush size 2 for playability
for(let by=0; by<=1; by++) {
for(let bx=0; bx<=1; bx++) {
const carverY = py+by;
const carverX = px+bx;
if (carverY>0 && carverY<height-1 && carverX>0 && carverX<width-1) {
const idx = carverY * width + carverX;
// Overwrite anything that isn't already Floor/Veg
if (map[idx] !== 0 && map[idx] !== 4) {
map[idx] = 0;
}
}
}
}
}
}
}
function countNeighbors(map: Uint8Array, width: number, height: number, x: number, y: number, targetInfo: number): number {
let count = 0;
// Inline checks for performance?
// 3x3 loop
for (let dy = -1; dy <= 1; dy++) {
for (let dx = -1; dx <= 1; dx++) {
if (dx === 0 && dy === 0) continue;
const nx = x + dx;
const ny = y + dy;
if (ny < 0 || ny >= height || nx < 0 || nx >= width) {
if (targetInfo === 1) count++; // Edges are walls
} else {
if (map[ny * width + nx] === targetInfo) {
count++;
}
}
}
}
return count;
}
function bfsFurthest(grid: Uint8Array, width: number, height: number, startX: number, startY: number): {x: number, y: number, dist: number} {
// Use Int32Array for distances to support large maps (-1 init)
const dists = new Int32Array(width * height).fill(-1);
// Packed queue
const queue = [startY * width + startX];
dists[startY * width + startX] = 0;
let furthest = {x: startX, y: startY, dist: 0};
// Using Queue (Shift) is slow.
// Circular buffer or pointer index is better.
let head = 0;
while(head < queue.length) {
const packed = queue[head++];
const cx = packed % width;
const cy = Math.floor(packed / width);
const d = dists[packed];
if (d > furthest.dist) {
furthest = {x: cx, y: cy, dist: d};
}
// Inline neighbors
// N
if (cy > 0) {
const idx = (cy - 1) * width + cx;
if (dists[idx] === -1) {
const t = grid[idx];
if (t === 0 || t === 4) {
dists[idx] = d + 1;
queue.push(idx);
}
}
}
// S
if (cy < height - 1) {
const idx = (cy + 1) * width + cx;
if (dists[idx] === -1) {
const t = grid[idx];
if (t === 0 || t === 4) {
dists[idx] = d + 1;
queue.push(idx);
}
}
}
// W
if (cx > 0) {
const idx = cy * width + (cx - 1);
if (dists[idx] === -1) {
const t = grid[idx];
if (t === 0 || t === 4) {
dists[idx] = d + 1;
queue.push(idx);
}
}
}
// E
if (cx < width - 1) {
const idx = cy * width + (cx + 1);
if (dists[idx] === -1) {
const t = grid[idx];
if (t === 0 || t === 4) {
dists[idx] = d + 1;
queue.push(idx);
}
}
}
}
return furthest;
}

View File

@@ -0,0 +1,61 @@
export class Perlin {
private perm: number[];
constructor() {
this.perm = new Array(512);
const p = new Array(256).fill(0).map((_, i) => i);
// Shuffle
for (let i = 255; i > 0; i--) {
const r = Math.floor(Math.random() * (i + 1));
[p[i], p[r]] = [p[r], p[i]];
}
for (let i = 0; i < 512; i++) {
this.perm[i] = p[i & 255];
}
}
public noise(x: number, y: number, z: number): number {
const X = Math.floor(x) & 255;
const Y = Math.floor(y) & 255;
const Z = Math.floor(z) & 255;
x -= Math.floor(x);
y -= Math.floor(y);
z -= Math.floor(z);
const u = fade(x);
const v = fade(y);
const w = fade(z);
const A = this.perm[X] + Y;
const AA = this.perm[A] + Z;
const AB = this.perm[A + 1] + Z;
const B = this.perm[X + 1] + Y;
const BA = this.perm[B] + Z;
const BB = this.perm[B + 1] + Z;
return lerp(w, lerp(v, lerp(u, grad(this.perm[AA], x, y, z),
grad(this.perm[BA], x - 1, y, z)),
lerp(u, grad(this.perm[AB], x, y - 1, z),
grad(this.perm[BB], x - 1, y - 1, z))),
lerp(v, lerp(u, grad(this.perm[AA + 1], x, y, z - 1),
grad(this.perm[BA + 1], x - 1, y, z - 1)),
lerp(u, grad(this.perm[AB + 1], x, y - 1, z - 1),
grad(this.perm[BB + 1], x - 1, y - 1, z - 1))));
}
}
function fade(t: number): number {
return t * t * t * (t * (t * 6 - 15) + 10);
}
function lerp(t: number, a: number, b: number): number {
return a + t * (b - a);
}
function grad(hash: number, x: number, y: number, z: number): number {
const h = hash & 15;
const u = h < 8 ? x : y;
const v = h < 4 ? y : h === 12 || h === 14 ? x : z;
return ((h & 1) === 0 ? u : -u) + ((h & 2) === 0 ? v : -v);
}

View File

@@ -0,0 +1,46 @@
export interface Genotype {
initialChance: number; // 0.0 - 1.0
birthLimit: number; // 1 - 8
deathLimit: number; // 1 - 8
steps: number; // 1 - 10
smoothingSteps: number; // 0 - 5
noiseReduction: boolean; // Remove small unconnected walls
// Hybrid Generation
useNoise: boolean; // If true, use Perlin Noise instead of random noise
noiseType: number; // 0 = Blob (Standard), 1 = Tunnel (Ridged)
noiseScale: number; // 5-50 (Zoom level)
noiseThreshold: number; // 0.2 - 0.8 (Sea/Wall level)
useRooms: boolean; // If true, inject rooms
roomCount: number; // 0-20
roomMinSize: number; // 3-8
roomMaxSize: number; // 8-15
// Water Layer (2)
waterInitialChance: number;
waterBirthLimit: number;
waterDeathLimit: number;
waterSteps: number;
// Lava Layer (3)
lavaInitialChance: number;
lavaBirthLimit: number;
lavaDeathLimit: number;
lavaSteps: number;
// Vegetation Layer (4)
vegInitialChance: number;
vegBirthLimit: number;
vegDeathLimit: number;
vegSteps: number;
}
export interface MapData {
grid: Uint8Array; // 1 = wall, 0 = floor, flat array (y*width+x)
width: number;
height: number;
startPoint?: {x: number, y: number};
endPoint?: {x: number, y: number};
pathLength?: number;
}

View File

@@ -29,7 +29,7 @@ export default function BestSnakeDisplay({ network, gridSize, fitness }: BestSna
<input <input
type="range" type="range"
min="1" min="1"
max="100" max="200"
value={playbackSpeed} value={playbackSpeed}
onChange={(e) => setPlaybackSpeed(Number(e.target.value))} onChange={(e) => setPlaybackSpeed(Number(e.target.value))}
style={{ flex: 1, accentColor: '#4ecdc4' }} style={{ flex: 1, accentColor: '#4ecdc4' }}

View File

@@ -7,7 +7,6 @@ import Tips from './Tips';
import BestSnakeDisplay from './BestSnakeDisplay'; import BestSnakeDisplay from './BestSnakeDisplay';
import { import {
createPopulation, createPopulation,
type Population,
} from '../../lib/snakeAI/evolution'; } from '../../lib/snakeAI/evolution';
import type { EvolutionConfig } from '../../lib/snakeAI/types'; import type { EvolutionConfig } from '../../lib/snakeAI/types';
import './SnakeAI.css'; import './SnakeAI.css';
@@ -20,7 +19,8 @@ const DEFAULT_CONFIG: EvolutionConfig = {
maxGameSteps: 20000, maxGameSteps: 20000,
}; };
import EvolutionWorker from '../../lib/snakeAI/evolution.worker?worker'; import { WorkerPool } from '../../lib/snakeAI/workerPool';
import { evolveGeneration, updateBestStats, type Population } from '../../lib/snakeAI/evolution';
export default function SnakeAI() { export default function SnakeAI() {
const [population, setPopulation] = useState<Population>(() => const [population, setPopulation] = useState<Population>(() =>
@@ -42,73 +42,64 @@ export default function SnakeAI() {
const lastUpdateRef = useRef<number>(0); const lastUpdateRef = useRef<number>(0);
// Compute derived values for display // Compute derived values for display
// If we have stats from the last generation, use them. Otherwise default to 0.
const currentBestFitness = population.lastGenerationStats?.bestFitness || 0; const currentBestFitness = population.lastGenerationStats?.bestFitness || 0;
const currentAverageFitness = population.lastGenerationStats?.averageFitness || 0; const currentAverageFitness = population.lastGenerationStats?.averageFitness || 0;
const workerRef = useRef<Worker | null>(null); const workerPoolRef = useRef<WorkerPool | null>(null);
const isProcessingRef = useRef(false); const isProcessingRef = useRef(false);
useEffect(() => { useEffect(() => {
workerRef.current = new EvolutionWorker(); // Initialize Worker Pool with logical cores (default)
workerRef.current.onmessage = (e) => { workerPoolRef.current = new WorkerPool();
const { type, payload } = e.data; // payload is the NEW population
if (type === 'SUCCESS') {
// Critical: Update ref immediately to prevent race condition with next animation frame
populationRef.current = payload;
setPopulation(payload);
// Update history if we have stats
if (payload.lastGenerationStats) {
setFitnessHistory(prev => {
const newEntry = {
generation: payload.generation - 1, // The stats are for the gen that just finished
best: payload.lastGenerationStats!.bestFitness,
average: payload.lastGenerationStats!.averageFitness
};
// Keep last 100 generations to avoid memory issues if running for eternity
const newHistory = [...prev, newEntry];
if (newHistory.length > 100) return newHistory.slice(newHistory.length - 100);
return newHistory;
});
}
isProcessingRef.current = false;
} else {
console.error("Worker error:", payload);
isProcessingRef.current = false;
}
};
return () => { return () => {
workerRef.current?.terminate(); workerPoolRef.current?.terminate();
}; };
}, []); }, []);
const runGeneration = useCallback((generations: number = 1) => { const runGeneration = useCallback(async (generations: number = 1) => {
if (isProcessingRef.current || !workerRef.current) return; if (isProcessingRef.current || !workerPoolRef.current) return;
isProcessingRef.current = true; isProcessingRef.current = true;
// We need to send the *current* population. let currentPop = populationRef.current;
// Since this is inside a callback, we need to be careful about closure staleness.
// However, we can't easily access the "latest" state inside a callback without refs or dependency.
// But 'population' is in the dependency array of the effect calling this? No.
// The animate loop calls this.
// Let's use a functional update approach? No, we need to SEND data. try {
// We will use a ref to track current population for the worker to ensure we always send latest for (let i = 0; i < generations; i++) {
// OR rely on the fact that 'population' is in dependency of runGeneration (it wasn't before). // 1. Evaluate in parallel
let evaluatedPop = await workerPoolRef.current.evaluateParallel(currentPop, config);
// Wait, 'runGeneration' lines 43-58 previously used setPopulation(prev => ...). // 1.5 Update Best Stats (Critical for UI)
// It didn't need 'population' in dependency. evaluatedPop = updateBestStats(evaluatedPop);
// Now we need it.
workerRef.current.postMessage({ // 2. Evolve on main thread (fast)
population: populationRef.current, // Use a ref for latest population currentPop = evolveGeneration(evaluatedPop, config);
config, }
generations
}); // Update state
}, [config]); // populationRef will be handled separately populationRef.current = currentPop;
setPopulation(currentPop);
// Update history
if (currentPop.lastGenerationStats) {
setFitnessHistory(prev => {
const newEntry = {
generation: currentPop.generation - 1,
best: currentPop.lastGenerationStats!.bestFitness,
average: currentPop.lastGenerationStats!.averageFitness
};
const newHistory = [...prev, newEntry];
if (newHistory.length > 100) return newHistory.slice(newHistory.length - 100);
return newHistory;
});
}
} catch (err) {
console.error("Evolution error:", err);
setIsRunning(false);
} finally {
isProcessingRef.current = false;
}
}, [config]);
// Update stats when generation changes // Update stats when generation changes
useEffect(() => { useEffect(() => {

View File

@@ -1,7 +1,7 @@
import { NavLink } from 'react-router-dom'; import { NavLink } from 'react-router-dom';
import './Sidebar.css'; import './Sidebar.css';
export type AppId = 'image-approx' | 'snake-ai'; export type AppId = 'image-approx' | 'snake-ai' | 'rogue-gen' | 'neat-arena';
export interface AppInfo { export interface AppInfo {
id: AppId; id: AppId;
@@ -26,6 +26,20 @@ export const APPS: AppInfo[] = [
icon: '🐍', icon: '🐍',
description: 'Evolve neural networks to play Snake', description: 'Evolve neural networks to play Snake',
}, },
{
id: 'rogue-gen',
path: '/rogue-gen',
name: 'Rogue Map Gen',
icon: '🏰',
description: 'Evolve cellular automata for dungeon generation',
},
{
id: 'neat-arena',
path: '/neat-arena',
name: 'NEAT Arena',
icon: '⚔️',
description: 'Evolve AI agents to fight in a top-down shooter',
},
]; ];
export default function Sidebar() { export default function Sidebar() {

View File

@@ -0,0 +1,184 @@
import Phaser from 'phaser';
import type { SimulationState } from './types';
import { SIMULATION_CONFIG } from './types';
/**
* Phaser scene for rendering the NEAT Arena.
*
* This scene is ONLY for visualization - the actual simulation runs separately.
* The scene receives simulation state updates and renders them.
*/
export class ArenaScene extends Phaser.Scene {
private simulationState: SimulationState | null = null;
private showRays: boolean = true;
// Graphics objects
private wallGraphics!: Phaser.GameObjects.Graphics;
private agentGraphics!: Phaser.GameObjects.Graphics;
private bulletGraphics!: Phaser.GameObjects.Graphics;
private rayGraphics!: Phaser.GameObjects.Graphics;
constructor() {
super({ key: 'ArenaScene' });
}
create() {
// Create graphics layers (back to front)
this.wallGraphics = this.add.graphics();
this.rayGraphics = this.add.graphics();
this.bulletGraphics = this.add.graphics();
this.agentGraphics = this.add.graphics();
// Set background
this.cameras.main.setBackgroundColor(0x1a1a2e);
}
update() {
if (!this.simulationState) return;
this.render();
}
/**
* Update the simulation state to render
*/
public updateSimulation(state: SimulationState) {
this.simulationState = state;
}
/**
* Toggle ray visualization
*/
public setShowRays(show: boolean) {
this.showRays = show;
}
/**
* Render the current simulation state
*/
private render() {
if (!this.simulationState) return;
// Clear graphics
this.wallGraphics.clear();
this.agentGraphics.clear();
this.bulletGraphics.clear();
this.rayGraphics.clear();
// Render walls
this.renderWalls();
// Render rays (if enabled)
if (this.showRays) {
this.renderRays();
}
// Render bullets
this.renderBullets();
// Render agents
this.renderAgents();
}
private renderWalls() {
if (!this.simulationState) return;
const { walls } = this.simulationState.map;
this.wallGraphics.fillStyle(0x4a5568, 1);
this.wallGraphics.lineStyle(2, 0x64748b, 1);
for (const wall of walls) {
const { minX, minY, maxX, maxY } = wall.rect;
this.wallGraphics.fillRect(minX, minY, maxX - minX, maxY - minY);
this.wallGraphics.strokeRect(minX, minY, maxX - minX, maxY - minY);
}
}
private renderAgents() {
if (!this.simulationState) return;
const agents = this.simulationState.agents;
const colors = [0x667eea, 0xf093fb]; // Purple and pink
for (let i = 0; i < agents.length; i++) {
const agent = agents[i];
const color = colors[i];
// Agent body (circle)
if (agent.invulnTicks > 0) {
// Flash when invulnerable
const alpha = agent.invulnTicks % 4 < 2 ? 0.5 : 1;
this.agentGraphics.fillStyle(color, alpha);
} else {
this.agentGraphics.fillStyle(color, 1);
}
this.agentGraphics.fillCircle(agent.position.x, agent.position.y, agent.radius);
// Border
this.agentGraphics.lineStyle(2, 0xffffff, 0.8);
this.agentGraphics.strokeCircle(agent.position.x, agent.position.y, agent.radius);
// Aim direction indicator
const aimLength = 20;
const aimEndX = agent.position.x + Math.cos(agent.aimAngle) * aimLength;
const aimEndY = agent.position.y + Math.sin(agent.aimAngle) * aimLength;
this.agentGraphics.lineStyle(3, 0xffffff, 1);
this.agentGraphics.lineBetween(agent.position.x, agent.position.y, aimEndX, aimEndY);
}
}
private renderBullets() {
if (!this.simulationState) return;
this.bulletGraphics.fillStyle(0xfbbf24, 1); // Yellow
this.bulletGraphics.lineStyle(1, 0xffffff, 0.8);
for (const bullet of this.simulationState.bullets) {
this.bulletGraphics.fillCircle(bullet.position.x, bullet.position.y, 3);
this.bulletGraphics.strokeCircle(bullet.position.x, bullet.position.y, 3);
}
}
private renderRays() {
if (!this.simulationState) return;
// TODO: This will be implemented when we integrate sensor visualization
// For now, rays will be rendered when we have a specific agent's observation to display
}
}
/**
* Create and initialize a Phaser game instance for the arena
*/
export function createArenaViewer(parentElement: HTMLElement): Phaser.Game {
const config: Phaser.Types.Core.GameConfig = {
type: Phaser.AUTO,
width: SIMULATION_CONFIG.WORLD_SIZE,
height: SIMULATION_CONFIG.WORLD_SIZE,
parent: parentElement,
backgroundColor: '#1a1a2e',
scene: ArenaScene,
physics: {
default: 'arcade',
arcade: {
debug: false,
},
},
scale: {
mode: Phaser.Scale.FIT,
autoCenter: Phaser.Scale.CENTER_BOTH,
},
};
return new Phaser.Game(config);
}
/**
* Get the scene instance from a Phaser game
*/
export function getArenaScene(game: Phaser.Game): ArenaScene {
return game.scene.getScene('ArenaScene') as ArenaScene;
}

View File

@@ -0,0 +1,60 @@
import type { AgentAction } from './types';
import { SeededRandom } from './utils';
/**
* Baseline scripted bots for testing and benchmarking.
*
* These provide simple strategies that can be used to:
* - Test the simulation mechanics
* - Provide initial training opponents
* - Benchmark evolved agents
*/
/**
* Random bot - takes random actions
*/
export function randomBotAction(rng: SeededRandom): AgentAction {
return {
moveX: rng.nextFloat(-1, 1),
moveY: rng.nextFloat(-1, 1),
turn: rng.nextFloat(-1, 1),
shoot: rng.next(),
};
}
/**
* Idle bot - does nothing
*/
export function idleBotAction(): AgentAction {
return {
moveX: 0,
moveY: 0,
turn: 0,
shoot: 0,
};
}
/**
* Spinner bot - spins in place and shoots
*/
export function spinnerBotAction(): AgentAction {
return {
moveX: 0,
moveY: 0,
turn: 1,
shoot: 1,
};
}
/**
* Circle strafe bot - moves in circles and shoots
*/
export function circleStrafeBotAction(tick: number): AgentAction {
const angle = (tick / 20) * Math.PI * 2;
return {
moveX: Math.cos(angle),
moveY: Math.sin(angle),
turn: 0.3,
shoot: tick % 15 === 0 ? 1 : 0,
};
}

View File

@@ -0,0 +1,76 @@
import type { Genome, InnovationTracker } from './genome';
import { cloneGenome } from './genome';
/**
* NEAT Crossover
*
* Produces offspring by crossing over two parent genomes.
* Follows the NEAT crossover rules:
* - Matching genes are randomly inherited
* - Disjoint/excess genes are inherited from the fitter parent
* - Disabled genes have a chance to stay disabled
*/
const DISABLED_GENE_INHERITANCE_RATE = 0.75;
/**
* Perform crossover between two genomes
* @param parent1 First parent (should be fitter or equal)
* @param parent2 Second parent
* @param innovationTracker Not used in crossover, but kept for consistency
* @returns Offspring genome
*/
export function crossover(
parent1: Genome,
parent2: Genome,
innovationTracker?: InnovationTracker
): Genome {
// Ensure parent1 is fitter (or equal)
if (parent2.fitness > parent1.fitness) {
[parent1, parent2] = [parent2, parent1];
}
const offspring = cloneGenome(parent1);
offspring.connections = [];
offspring.fitness = 0;
// Build innovation maps
const p1Connections = new Map(
parent1.connections.map(c => [c.innovation, c])
);
const p2Connections = new Map(
parent2.connections.map(c => [c.innovation, c])
);
// Get all innovation numbers
const allInnovations = new Set([
...p1Connections.keys(),
...p2Connections.keys(),
]);
for (const innovation of allInnovations) {
const conn1 = p1Connections.get(innovation);
const conn2 = p2Connections.get(innovation);
if (conn1 && conn2) {
// Matching gene - randomly choose from either parent
const chosen = Math.random() < 0.5 ? conn1 : conn2;
const newConn = { ...chosen };
// Handle disabled gene inheritance
if (!conn1.enabled || !conn2.enabled) {
if (Math.random() < DISABLED_GENE_INHERITANCE_RATE) {
newConn.enabled = false;
}
}
offspring.connections.push(newConn);
} else if (conn1) {
// Disjoint/excess gene from parent1 (fitter)
offspring.connections.push({ ...conn1 });
}
// Genes only in parent2 are not inherited (parent1 is fitter)
}
return offspring;
}

View File

@@ -0,0 +1,154 @@
import { InnovationTracker, type Genome } from './genome';
import type { Species } from './speciation';
import type { ReproductionConfig } from './reproduction';
import { createMinimalGenome } from './genome';
import {
speciate,
adjustCompatibilityThreshold,
applyFitnessSharing,
DEFAULT_COMPATIBILITY_CONFIG,
type CompatibilityConfig,
} from './speciation';
import { reproduce, DEFAULT_REPRODUCTION_CONFIG } from './reproduction';
/**
* NEAT Evolution Engine
*
* Coordinates the entire evolution process:
* - Population management
* - Speciation
* - Fitness evaluation
* - Reproduction
*/
export interface EvolutionConfig {
populationSize: number;
inputCount: number;
outputCount: number;
compatibilityConfig: CompatibilityConfig;
reproductionConfig: ReproductionConfig;
}
export const DEFAULT_EVOLUTION_CONFIG: EvolutionConfig = {
populationSize: 40,
inputCount: 53, // Ray sensors + extra inputs
outputCount: 5, // moveX, moveY, turn, shoot, reserved
compatibilityConfig: DEFAULT_COMPATIBILITY_CONFIG,
reproductionConfig: DEFAULT_REPRODUCTION_CONFIG,
};
export interface Population {
genomes: Genome[];
species: Species[];
generation: number;
compatibilityThreshold: number;
innovationTracker: InnovationTracker;
bestGenomeEver: Genome | null;
bestFitnessEver: number;
}
/**
* Create initial population
*/
export function createPopulation(config: EvolutionConfig): Population {
const innovationTracker = new InnovationTracker();
const genomes: Genome[] = [];
for (let i = 0; i < config.populationSize; i++) {
genomes.push(createMinimalGenome(
config.inputCount,
config.outputCount,
innovationTracker
));
}
return {
genomes,
species: [],
generation: 0,
compatibilityThreshold: 1.5, // Balanced to target 6-10 species
innovationTracker,
bestGenomeEver: null,
bestFitnessEver: -Infinity,
};
}
/**
* Evolve the population by one generation
*
* Note: This assumes genomes have already been evaluated and have fitness values.
*/
export function evolveGeneration(population: Population, config: EvolutionConfig): Population {
// 1. Speciate
const species = speciate(
population.genomes,
population.species,
population.compatibilityThreshold,
config.compatibilityConfig
);
// 2. Apply fitness sharing
applyFitnessSharing(species);
// 3. Remove stagnant species (optional for now)
// TODO: Implement staleness checking and removal
// 4. Track best genome
let bestGenome = population.bestGenomeEver;
let bestFitness = population.bestFitnessEver;
for (const genome of population.genomes) {
if (genome.fitness > bestFitness) {
bestFitness = genome.fitness;
bestGenome = genome;
}
}
// 5. Reproduce
const newGenomes = reproduce(
species,
config.populationSize,
population.innovationTracker,
config.reproductionConfig
);
// 6. Adjust compatibility threshold
const newThreshold = adjustCompatibilityThreshold(
population.compatibilityThreshold,
species.length
);
return {
genomes: newGenomes,
species,
generation: population.generation + 1,
compatibilityThreshold: newThreshold,
innovationTracker: population.innovationTracker,
bestGenomeEver: bestGenome,
bestFitnessEver: bestFitness,
};
}
/**
* Get statistics for the current population
*/
export function getPopulationStats(population: Population) {
const fitnesses = population.genomes.map(g => g.fitness);
const avgFitness = fitnesses.reduce((a, b) => a + b, 0) / fitnesses.length;
const maxFitness = Math.max(...fitnesses);
const minFitness = Math.min(...fitnesses);
// When population comes from worker, innovationTracker is a plain object
// Access the private property directly instead of calling method
const totalInnovations = (population.innovationTracker as any).currentInnovation || 0;
return {
generation: population.generation,
speciesCount: population.species.length,
avgFitness,
maxFitness,
minFitness,
bestFitnessEver: population.bestFitnessEver,
totalInnovations,
};
}

View File

@@ -0,0 +1,120 @@
import type { Genome } from './genome';
import type { EvolutionConfig } from './evolution';
/**
* Export/Import system for trained genomes.
*
* Allows saving champion genomes as JSON files and loading them back
* for exhibition matches or continued training.
*/
export interface ExportedGenome {
version: string;
timestamp: number;
config: {
inputCount: number;
outputCount: number;
};
genome: Genome;
metadata?: {
generation?: number;
fitness?: number;
speciesCount?: number;
};
}
const EXPORT_VERSION = '1.0.0';
/**
* Export a genome to a downloadable JSON format
*/
export function exportGenome(
genome: Genome,
config: EvolutionConfig,
metadata?: ExportedGenome['metadata']
): ExportedGenome {
return {
version: EXPORT_VERSION,
timestamp: Date.now(),
config: {
inputCount: config.inputCount,
outputCount: config.outputCount,
},
genome: {
nodes: genome.nodes,
connections: genome.connections,
fitness: genome.fitness,
},
metadata,
};
}
/**
* Import a genome from JSON
*/
export function importGenome(exported: ExportedGenome): {
genome: Genome;
config: { inputCount: number; outputCount: number };
} {
// Version check
if (exported.version !== EXPORT_VERSION) {
console.warn(`Imported genome version ${exported.version} may be incompatible with current version ${EXPORT_VERSION}`);
}
return {
genome: exported.genome,
config: exported.config,
};
}
/**
* Download genome as JSON file
*/
export function downloadGenomeAsFile(exported: ExportedGenome, filename?: string): void {
const json = JSON.stringify(exported, null, 2);
const blob = new Blob([json], { type: 'application/json' });
const url = URL.createObjectURL(blob);
const link = document.createElement('a');
link.href = url;
link.download = filename || `neat-champion-${Date.now()}.json`;
document.body.appendChild(link);
link.click();
document.body.removeChild(link);
URL.revokeObjectURL(url);
}
/**
* Upload and parse genome from file
*/
export function uploadGenomeFromFile(): Promise<ExportedGenome> {
return new Promise((resolve, reject) => {
const input = document.createElement('input');
input.type = 'file';
input.accept = 'application/json,.json';
input.onchange = (e) => {
const file = (e.target as HTMLInputElement).files?.[0];
if (!file) {
reject(new Error('No file selected'));
return;
}
const reader = new FileReader();
reader.onload = (event) => {
try {
const json = event.target?.result as string;
const exported = JSON.parse(json) as ExportedGenome;
resolve(exported);
} catch (err) {
reject(new Error('Failed to parse genome file'));
}
};
reader.onerror = () => reject(new Error('Failed to read file'));
reader.readAsText(file);
};
input.click();
});
}

View File

@@ -0,0 +1,86 @@
import type { SimulationState } from './types';
import { hasLineOfSight } from './sensors';
/**
* Fitness calculation for NEAT Arena.
*
* Fitness rewards:
* - +10 per hit on opponent
* - -10 per being hit
* - -0.002 per tick (time penalty to encourage aggression)
* - -0.2 per shot fired (ammo management)
* - +0.01 per tick when aiming well at visible opponent
*/
export interface FitnessTracker {
agentId: number;
fitness: number;
// For incremental calculation
lastKills: number;
lastHits: number;
shotsFired: number;
}
/**
* Create a new fitness tracker
*/
export function createFitnessTracker(agentId: number): FitnessTracker {
return {
agentId,
fitness: 0,
lastKills: 0,
lastHits: 0,
shotsFired: 0,
};
}
/**
* Update fitness based on current simulation state
*/
export function updateFitness(tracker: FitnessTracker, state: SimulationState): FitnessTracker {
const agent = state.agents.find(a => a.id === tracker.agentId)!;
const opponent = state.agents.find(a => a.id !== tracker.agentId)!;
const newTracker = { ...tracker };
// Reward for new kills
const newKills = agent.kills - tracker.lastKills;
newTracker.fitness += newKills * 10;
newTracker.lastKills = agent.kills;
// Penalty for being hit
const newHits = agent.hits - tracker.lastHits;
newTracker.fitness -= newHits * 10;
newTracker.lastHits = agent.hits;
// Time penalty (encourages finishing quickly)
newTracker.fitness -= 0.002;
// Check if agent fired this tick (cooldown just set)
if (agent.fireCooldown === 10) {
newTracker.shotsFired++;
newTracker.fitness -= 0.2;
}
// Reward for aiming at visible opponent
if (hasLineOfSight(agent, opponent, state.map.walls)) {
const dx = opponent.position.x - agent.position.x;
const dy = opponent.position.y - agent.position.y;
const angleToOpponent = Math.atan2(dy, dx);
// Normalize angle difference
let angleDiff = angleToOpponent - agent.aimAngle;
while (angleDiff > Math.PI) angleDiff -= 2 * Math.PI;
while (angleDiff < -Math.PI) angleDiff += 2 * Math.PI;
const cosAngleDiff = Math.cos(angleDiff);
// Reward if aiming close (cos > 0.95 ≈ within ~18°)
if (cosAngleDiff > 0.95) {
newTracker.fitness += 0.01;
}
}
return newTracker;
}

214
src/lib/neatArena/genome.ts Normal file
View File

@@ -0,0 +1,214 @@
/**
* NEAT Genome Implementation
*
* Represents a neural network genome with node genes and connection genes.
* Implements the core NEAT genome structure as described in the original paper.
*/
export type NodeType = 'input' | 'hidden' | 'output';
export type ActivationFunction = 'tanh' | 'sigmoid' | 'relu' | 'linear';
/**
* Node gene - represents a neuron
*/
export interface NodeGene {
id: number;
type: NodeType;
activation: ActivationFunction;
}
/**
* Connection gene - represents a synapse
*/
export interface ConnectionGene {
innovation: number;
from: number;
to: number;
weight: number;
enabled: boolean;
}
/**
* Complete genome
*/
export interface Genome {
nodes: NodeGene[];
connections: ConnectionGene[];
fitness: number;
}
/**
* Global innovation tracker for historical markings
*/
export class InnovationTracker {
private currentInnovation: number = 0;
private innovationHistory: Map<string, number> = new Map();
/**
* Get or create innovation number for a connection
*/
getInnovation(from: number, to: number): number {
const key = `${from}->${to}`;
if (this.innovationHistory.has(key)) {
return this.innovationHistory.get(key)!;
}
const innovation = this.currentInnovation++;
this.innovationHistory.set(key, innovation);
return innovation;
}
/**
* Reset innovation tracking (useful for new experiments)
*/
reset(): void {
this.currentInnovation = 0;
this.innovationHistory.clear();
}
/**
* Get current innovation count
*/
getCurrentInnovation(): number {
return this.currentInnovation;
}
}
/**
* Create a minimal genome with only input and output nodes, fully connected
*/
export function createMinimalGenome(
inputCount: number,
outputCount: number,
innovationTracker: InnovationTracker
): Genome {
const nodes: NodeGene[] = [];
const connections: ConnectionGene[] = [];
// Create input nodes (IDs 0 to inputCount-1)
for (let i = 0; i < inputCount; i++) {
nodes.push({
id: i,
type: 'input',
activation: 'linear',
});
}
// Create output nodes (IDs starting from inputCount)
for (let i = 0; i < outputCount; i++) {
nodes.push({
id: inputCount + i,
type: 'output',
activation: 'tanh',
});
}
// Create fully connected minimal genome
for (let i = 0; i < inputCount; i++) {
const inputNode = i; // Assuming inputNode refers to the ID
for (let o = 0; o < outputCount; o++) {
const outputNode = inputCount + o; // Assuming outputNode refers to the ID
const innovation = innovationTracker.getInnovation(inputNode, outputNode);
connections.push({
innovation,
from: inputNode,
to: outputNode,
weight: (Math.random() * 4) - 2, // Random weight in [-2, 2] for initial diversity
enabled: true,
});
}
}
return {
nodes,
connections,
fitness: 0,
};
}
/**
* Clone a genome (deep copy)
*/
export function cloneGenome(genome: Genome): Genome {
return {
nodes: genome.nodes.map(n => ({ ...n })),
connections: genome.connections.map(c => ({ ...c })),
fitness: genome.fitness,
};
}
/**
* Get next available node ID
*/
export function getNextNodeId(genome: Genome): number {
return Math.max(...genome.nodes.map(n => n.id)) + 1;
}
/**
* Check if a connection already exists
*/
export function connectionExists(genome: Genome, from: number, to: number): boolean {
return genome.connections.some(c => c.from === from && c.to === to);
}
/**
* Check if adding a connection would create a cycle (for feedforward networks)
*/
export function wouldCreateCycle(genome: Genome, from: number, to: number): boolean {
// Build adjacency list
const adj = new Map<number, number[]>();
for (const node of genome.nodes) {
adj.set(node.id, []);
}
for (const conn of genome.connections) {
if (!conn.enabled) continue;
if (!adj.has(conn.from)) adj.set(conn.from, []);
adj.get(conn.from)!.push(conn.to);
}
// Add the proposed connection
if (!adj.has(from)) adj.set(from, []);
adj.get(from)!.push(to);
// DFS to detect cycle
const visited = new Set<number>();
const recStack = new Set<number>();
const hasCycle = (nodeId: number): boolean => {
visited.add(nodeId);
recStack.add(nodeId);
const neighbors = adj.get(nodeId) || [];
for (const neighbor of neighbors) {
if (!visited.has(neighbor)) {
if (hasCycle(neighbor)) return true;
} else if (recStack.has(neighbor)) {
return true;
}
}
recStack.delete(nodeId);
return false;
};
// Check from the 'from' node
return hasCycle(from);
}
/**
* Serialize genome to JSON
*/
export function serializeGenome(genome: Genome): string {
return JSON.stringify(genome, null, 2);
}
/**
* Deserialize genome from JSON
*/
export function deserializeGenome(json: string): Genome {
return JSON.parse(json);
}

View File

@@ -0,0 +1,123 @@
import type { ArenaMap, Wall, SpawnPoint, AABB, Vec2 } from './types';
import { SIMULATION_CONFIG } from './types';
import { SeededRandom } from './utils';
/**
* Generates a symmetric arena map with procedurally placed walls.
*
* The map is generated by creating walls on the left half, then mirroring them
* to the right half for perfect symmetry.
*
* Spawn points are placed symmetrically as well.
*/
export function generateArenaMap(seed: number): ArenaMap {
const rng = new SeededRandom(seed);
const { WORLD_SIZE } = SIMULATION_CONFIG;
const walls: Wall[] = [];
const spawnPoints: SpawnPoint[] = [];
// Add boundary walls
const wallThickness = 16;
walls.push(
// Top
{ rect: { minX: 0, minY: 0, maxX: WORLD_SIZE, maxY: wallThickness } },
// Bottom
{ rect: { minX: 0, minY: WORLD_SIZE - wallThickness, maxX: WORLD_SIZE, maxY: WORLD_SIZE } },
// Left
{ rect: { minX: 0, minY: 0, maxX: wallThickness, maxY: WORLD_SIZE } },
// Right
{ rect: { minX: WORLD_SIZE - wallThickness, minY: 0, maxX: WORLD_SIZE, maxY: WORLD_SIZE } }
);
// Generate interior walls on left half, then mirror
const numInteriorWalls = rng.nextInt(3, 6);
const leftHalfWalls: AABB[] = [];
for (let i = 0; i < numInteriorWalls; i++) {
const width = rng.nextFloat(30, 80);
const height = rng.nextFloat(30, 80);
// Keep walls in left half (with margin)
const minX = rng.nextFloat(wallThickness + 20, WORLD_SIZE / 2 - width - 20);
const minY = rng.nextFloat(wallThickness + 20, WORLD_SIZE - height - wallThickness - 20);
const wall: AABB = {
minX,
minY,
maxX: minX + width,
maxY: minY + height,
};
leftHalfWalls.push(wall);
walls.push({ rect: wall });
}
// Mirror walls to right half
for (const leftWall of leftHalfWalls) {
const centerX = WORLD_SIZE / 2;
const distFromCenter = centerX - ((leftWall.minX + leftWall.maxX) / 2);
const mirroredCenterX = centerX + distFromCenter;
const wallWidth = leftWall.maxX - leftWall.minX;
const mirroredWall: AABB = {
minX: mirroredCenterX - wallWidth / 2,
maxX: mirroredCenterX + wallWidth / 2,
minY: leftWall.minY,
maxY: leftWall.maxY,
};
walls.push({ rect: mirroredWall });
}
// Generate 5 symmetric spawn point pairs
// Spawn points should be clear of walls
for (let pairId = 0; pairId < 5; pairId++) {
let leftSpawn: Vec2;
let attempts = 0;
// Find a valid spawn point on the left
do {
leftSpawn = {
x: rng.nextFloat(wallThickness + 40, WORLD_SIZE / 2 - 40),
y: rng.nextFloat(wallThickness + 40, WORLD_SIZE - wallThickness - 40),
};
attempts++;
} while (isPositionInWall(leftSpawn, walls) && attempts < 50);
// Mirror to right
const rightSpawn: Vec2 = {
x: WORLD_SIZE - leftSpawn.x,
y: leftSpawn.y,
};
spawnPoints.push(
{ position: leftSpawn, pairId, side: 0 },
{ position: rightSpawn, pairId, side: 1 }
);
}
return {
walls,
spawnPoints,
seed,
};
}
/**
* Check if a position overlaps with any wall
*/
function isPositionInWall(pos: Vec2, walls: Wall[]): boolean {
const margin = 20; // give some breathing room
for (const wall of walls) {
if (
pos.x >= wall.rect.minX - margin &&
pos.x <= wall.rect.maxX + margin &&
pos.y >= wall.rect.minY - margin &&
pos.y <= wall.rect.maxY + margin
) {
return true;
}
}
return false;
}

View File

@@ -0,0 +1,218 @@
import type { Genome, InnovationTracker } from './genome';
import {
cloneGenome,
getNextNodeId,
connectionExists,
wouldCreateCycle,
} from './genome';
/**
* NEAT Mutations
*
* Implements the core mutation operations:
* - Weight perturbation (80%)
* - Weight reset (10%)
* - Add connection (5%)
* - Add node (3%)
* - Toggle connection (2%)
*/
export interface MutationRates {
mutateWeightsProb: number;
resetWeightProb: number;
addConnectionProb: number;
addNodeProb: number;
toggleConnectionProb: number;
perturbationPower: number;
resetRange: number;
}
/**
* Default mutation probabilities
*/
export const DEFAULT_MUTATION_RATES: MutationRates = {
mutateWeightsProb: 0.50, // Reduced from 0.8 to allow more structural mutations
resetWeightProb: 0.05, // Reduced from 0.1
addConnectionProb: 0.20, // Increased from 0.05 for more diversity
addNodeProb: 0.15, // Increased from 0.03 for more complexity
toggleConnectionProb: 0.10, // Increased from 0.02
// Weight mutation parameters
perturbationPower: 0.5, // Increased from 0.1 for stronger weight changes
resetRange: 2.0, // Weight reset range
};
/**
* Apply mutations to a genome
*/
export function mutate(genome: Genome, tracker: InnovationTracker, rates = DEFAULT_MUTATION_RATES): void {
let addedConnections = 0;
let addedNodes = 0;
let toggledConnections = 0;
// Mutate weights
if (Math.random() < rates.mutateWeightsProb) {
mutateWeights(genome, rates);
}
// Reset a random weight
if (Math.random() < rates.resetWeightProb) {
resetWeight(genome, rates);
}
// Add connection
if (Math.random() < rates.addConnectionProb) {
if (addConnection(genome, tracker)) {
addedConnections++;
}
}
// Add node
if (Math.random() < rates.addNodeProb) {
if (addNode(genome, tracker)) {
addedNodes++;
}
}
// Toggle connection
if (Math.random() < rates.toggleConnectionProb) {
if (toggleConnection(genome)) {
toggledConnections++;
}
}
// Log structural mutations (only if any happened)
if (addedConnections > 0 || addedNodes > 0 || toggledConnections > 0) {
console.log(`[Mutation] +${addedConnections} conn, +${addedNodes} nodes, ${toggledConnections} toggled`);
}
}
/**
* Perturb weights slightly
*/
function mutateWeights(genome: Genome, rates: MutationRates): void {
for (const conn of genome.connections) {
if (Math.random() < 0.9) {
// Small perturbation
conn.weight += (Math.random() * 2 - 1) * rates.perturbationPower;
// Clamp to reasonable range
conn.weight = Math.max(-5, Math.min(5, conn.weight));
}
}
}
/**
* Reset a random weight to a new random value
*/
function resetWeight(genome: Genome, rates: MutationRates): void {
if (genome.connections.length === 0) return;
const conn = genome.connections[Math.floor(Math.random() * genome.connections.length)];
conn.weight = (Math.random() * 2 - 1) * rates.resetRange;
}
/**
* Add a new connection between two nodes
*/
function addConnection(genome: Genome, innovationTracker: InnovationTracker): boolean {
const inputNodes = genome.nodes.filter(n => n.type === 'input');
const nonInputNodes = genome.nodes.filter(n => n.type !== 'input');
if (inputNodes.length === 0 || nonInputNodes.length === 0) return false;
// Try to find a valid connection
let attempts = 0;
const maxAttempts = 20;
while (attempts < maxAttempts) {
// Random from node (any node)
const fromNode = genome.nodes[Math.floor(Math.random() * genome.nodes.length)];
// Random to node (not input)
const toNode = nonInputNodes[Math.floor(Math.random() * nonInputNodes.length)];
// Can't connect to itself
if (fromNode.id === toNode.id) {
attempts++;
continue;
}
// Check if connection already exists
if (connectionExists(genome, fromNode.id, toNode.id)) {
attempts++;
continue;
}
// Check if it would create a cycle
if (wouldCreateCycle(genome, fromNode.id, toNode.id)) {
attempts++;
continue;
}
// Valid connection!
genome.connections.push({
innovation: innovationTracker.getInnovation(fromNode.id, toNode.id),
from: fromNode.id,
to: toNode.id,
weight: (Math.random() * 2 - 1) * 2, // [-2, 2]
enabled: true,
});
return true;
}
return false;
}
/**
* Add a new node by splitting an existing connection
*/
function addNode(genome: Genome, innovationTracker: InnovationTracker): boolean {
const enabledConnections = genome.connections.filter(c => c.enabled);
if (enabledConnections.length === 0) return false;
// Pick a random enabled connection
const conn = enabledConnections[Math.floor(Math.random() * enabledConnections.length)];
// Disable the old connection
conn.enabled = false;
// Create new node
const newNodeId = getNextNodeId(genome);
genome.nodes.push({
id: newNodeId,
type: 'hidden',
activation: 'tanh',
});
// Create two new connections:
// 1. from -> newNode (weight = 1.0)
genome.connections.push({
innovation: innovationTracker.getInnovation(conn.from, newNodeId),
from: conn.from,
to: newNodeId,
weight: 1.0,
enabled: true,
});
// 2. newNode -> to (weight = old connection's weight)
genome.connections.push({
innovation: innovationTracker.getInnovation(newNodeId, conn.to),
from: newNodeId,
to: conn.to,
weight: conn.weight,
enabled: true,
});
return true;
}
/**
* Toggle a random connection's enabled state
*/
function toggleConnection(genome: Genome): boolean {
if (genome.connections.length === 0) return false;
const conn = genome.connections[Math.floor(Math.random() * genome.connections.length)];
conn.enabled = !conn.enabled;
return true;
}

View File

@@ -0,0 +1,183 @@
import type { Genome, NodeGene, ConnectionGene, ActivationFunction } from './genome';
/**
* Feedforward neural network built from a NEAT genome.
*
* The network is built by topologically sorting the nodes and
* evaluating them in order to ensure feedforward behavior.
*/
interface NetworkNode {
id: number;
activation: ActivationFunction;
inputs: { weight: number; sourceId: number }[];
value: number;
}
export class NeuralNetwork {
private inputNodes: number[];
private outputNodes: number[];
private nodes: Map<number, NetworkNode>;
private evaluationOrder: number[];
constructor(genome: Genome) {
this.inputNodes = [];
this.outputNodes = [];
this.nodes = new Map();
this.evaluationOrder = [];
this.buildNetwork(genome);
}
/**
* Build the network from the genome
*/
private buildNetwork(genome: Genome): void {
// Create network nodes
for (const nodeGene of genome.nodes) {
this.nodes.set(nodeGene.id, {
id: nodeGene.id,
activation: nodeGene.activation,
inputs: [],
value: 0,
});
if (nodeGene.type === 'input') {
this.inputNodes.push(nodeGene.id);
} else if (nodeGene.type === 'output') {
this.outputNodes.push(nodeGene.id);
}
}
// Add connections
for (const conn of genome.connections) {
if (!conn.enabled) continue;
const targetNode = this.nodes.get(conn.to);
if (targetNode) {
targetNode.inputs.push({
weight: conn.weight,
sourceId: conn.from,
});
}
}
// Compute evaluation order (topological sort)
this.evaluationOrder = this.topologicalSort(genome);
}
/**
* Topological sort to determine evaluation order
*/
private topologicalSort(genome: Genome): number[] {
const inDegree = new Map<number, number>();
const adj = new Map<number, number[]>();
// Initialize
for (const node of genome.nodes) {
inDegree.set(node.id, 0);
adj.set(node.id, []);
}
// Build adjacency list and in-degrees
for (const conn of genome.connections) {
if (!conn.enabled) continue;
adj.get(conn.from)!.push(conn.to);
inDegree.set(conn.to, (inDegree.get(conn.to) || 0) + 1);
}
// Kahn's algorithm
const queue: number[] = [];
const order: number[] = [];
// Start with nodes that have no incoming edges
for (const [nodeId, degree] of inDegree.entries()) {
if (degree === 0) {
queue.push(nodeId);
}
}
while (queue.length > 0) {
const nodeId = queue.shift()!;
order.push(nodeId);
for (const neighbor of adj.get(nodeId) || []) {
inDegree.set(neighbor, inDegree.get(neighbor)! - 1);
if (inDegree.get(neighbor) === 0) {
queue.push(neighbor);
}
}
}
return order;
}
/**
* Activate the network with inputs and return outputs
*/
activate(inputs: number[]): number[] {
if (inputs.length !== this.inputNodes.length) {
throw new Error(`Expected ${this.inputNodes.length} inputs, got ${inputs.length}`);
}
// Reset all node values
for (const node of this.nodes.values()) {
node.value = 0;
}
// Set input values
for (let i = 0; i < this.inputNodes.length; i++) {
const node = this.nodes.get(this.inputNodes[i])!;
node.value = inputs[i];
}
// Evaluate nodes in topological order
for (const nodeId of this.evaluationOrder) {
const node = this.nodes.get(nodeId)!;
// Skip input nodes (already set)
if (this.inputNodes.includes(nodeId)) continue;
// Sum weighted inputs
let sum = 0;
for (const input of node.inputs) {
const sourceNode = this.nodes.get(input.sourceId);
if (sourceNode) {
sum += sourceNode.value * input.weight;
}
}
// Apply activation function
node.value = this.applyActivation(sum, node.activation);
}
// Collect output values
return this.outputNodes.map(id => this.nodes.get(id)!.value);
}
/**
* Apply activation function
*/
private applyActivation(x: number, activation: ActivationFunction): number {
switch (activation) {
case 'tanh':
return Math.tanh(x);
case 'sigmoid':
return 1 / (1 + Math.exp(-x));
case 'relu':
return Math.max(0, x);
case 'linear':
return x;
default:
return Math.tanh(x);
}
}
}
/**
* Create a neural network from a genome
*/
export function createNetwork(genome: Genome): NeuralNetwork {
return new NeuralNetwork(genome);
}

View File

@@ -0,0 +1,160 @@
import type { Genome, InnovationTracker } from './genome';
import type { Species } from './speciation';
import { cloneGenome } from './genome';
import { crossover } from './crossover';
import { mutate, DEFAULT_MUTATION_RATES, type MutationRates } from './mutations';
/**
* NEAT Reproduction
*
* Handles species-based selection, crossover, and offspring generation.
* Implements elitism and proper offspring allocation.
*/
export interface ReproductionConfig {
elitePerSpecies: number;
crossoverRate: number;
interspeciesMatingRate: number;
mutationRates: MutationRates;
}
export const DEFAULT_REPRODUCTION_CONFIG: ReproductionConfig = {
elitePerSpecies: 1,
crossoverRate: 0.75,
interspeciesMatingRate: 0.001,
mutationRates: DEFAULT_MUTATION_RATES,
};
/**
* Reproduce a new generation from species
*/
export function reproduce(
species: Species[],
populationSize: number,
innovationTracker: InnovationTracker,
config: ReproductionConfig = DEFAULT_REPRODUCTION_CONFIG
): Genome[] {
const newGenomes: Genome[] = [];
// Calculate total adjusted fitness
const totalAdjustedFitness = species.reduce((sum, s) => {
return sum + s.members.reduce((sSum, g) => sSum + g.fitness, 0);
}, 0);
if (totalAdjustedFitness === 0) {
// If all fitness is 0, allocate equally
const genomesPerSpecies = Math.floor(populationSize / species.length);
for (const spec of species) {
const offspring = reproduceSpecies(
spec,
genomesPerSpecies,
innovationTracker,
config
);
newGenomes.push(...offspring);
}
} else {
// Allocate offspring based on adjusted fitness
for (const spec of species) {
const speciesFitness = spec.members.reduce((sum, g) => sum + g.fitness, 0);
const offspringCount = Math.max(
1,
Math.floor((speciesFitness / totalAdjustedFitness) * populationSize)
);
const offspring = reproduceSpecies(
spec,
offspringCount,
innovationTracker,
config
);
newGenomes.push(...offspring);
}
}
// If we don't have enough genomes, fill with random mutations of best
while (newGenomes.length < populationSize) {
const bestGenome = getBestGenomeFromSpecies(species);
const mutated = mutate(bestGenome, innovationTracker, config.mutationRates);
newGenomes.push(mutated);
}
// If we have too many, trim the worst
if (newGenomes.length > populationSize) {
newGenomes.sort((a, b) => b.fitness - a.fitness);
newGenomes.length = populationSize;
}
return newGenomes;
}
/**
* Reproduce offspring within a species
*/
function reproduceSpecies(
species: Species,
offspringCount: number,
innovationTracker: InnovationTracker,
config: ReproductionConfig
): Genome[] {
const offspring: Genome[] = [];
// Sort members by fitness
const sorted = [...species.members].sort((a, b) => b.fitness - a.fitness);
// Elitism: keep best genomes unchanged
const eliteCount = Math.min(config.elitePerSpecies, sorted.length, offspringCount);
for (let i = 0; i < eliteCount; i++) {
offspring.push(cloneGenome(sorted[i]));
}
// Generate rest through crossover and mutation
while (offspring.length < offspringCount) {
let child: Genome;
// Select parents
const parent1 = selectParent(sorted);
const parent2 = sorted.length >= 2 ? selectParent(sorted) : null;
// Crossover if we have two different parents, otherwise clone
if (parent2 && parent1 !== parent2 && Math.random() < config.crossoverRate) {
child = crossover(parent1, parent2, innovationTracker);
} else {
child = cloneGenome(parent1);
}
// Always mutate (except elites)
mutate(child, innovationTracker, config.mutationRates);
offspring.push(child);
}
return offspring;
}
/**
* Select a parent using fitness-proportionate selection
*/
function selectParent(sortedGenomes: Genome[]): Genome {
// Simple tournament selection (top 50%)
const tournamentSize = Math.max(2, Math.floor(sortedGenomes.length * 0.5));
const index = Math.floor(Math.random() * tournamentSize);
return sortedGenomes[index];
}
/**
* Get the best genome from all species
*/
function getBestGenomeFromSpecies(species: Species[]): Genome {
let best: Genome | null = null;
for (const spec of species) {
for (const genome of spec.members) {
if (!best || genome.fitness > best.fitness) {
best = genome;
}
}
}
return best || species[0].members[0];
}

View File

@@ -0,0 +1,199 @@
import type { Genome } from './genome';
import type { Population } from './evolution';
import type { AgentAction } from './types';
import { createSimulation, stepSimulation } from './simulation';
import { createNetwork } from './network';
import { generateObservation, observationToInputs } from './sensors';
import { createFitnessTracker, updateFitness } from './fitness';
import { SeededRandom } from './utils';
/**
* Self-Play Scheduler
*
* Orchestrates training matches between genomes.
* Each genome plays K opponents, with side swapping for fairness.
*/
export interface MatchConfig {
matchesPerGenome: number; // K
mapSeed: number;
maxTicks: number;
}
export const DEFAULT_MATCH_CONFIG: MatchConfig = {
matchesPerGenome: 4,
mapSeed: 12345,
maxTicks: 600,
};
interface MatchPairing {
genome1Index: number;
genome2Index: number;
spawnPairId: number;
swapSides: boolean;
}
/**
* Evaluate entire population using self-play
*/
export function evaluatePopulation(
population: Population,
config: MatchConfig = DEFAULT_MATCH_CONFIG
): Population {
const genomes = population.genomes;
const K = config.matchesPerGenome;
// Initialize fitness trackers
const fitnessTrackers = genomes.map((_, i) => ({
totalFitness: 0,
matchCount: 0,
}));
// Generate deterministic pairings
const pairings = generatePairings(genomes.length, K, population.generation);
// Run all matches
for (const pairing of pairings) {
const result = runMatch(
genomes[pairing.genome1Index],
genomes[pairing.genome2Index],
pairing,
config
);
// Accumulate fitness
fitnessTrackers[pairing.genome1Index].totalFitness += result.fitness1;
fitnessTrackers[pairing.genome1Index].matchCount++;
fitnessTrackers[pairing.genome2Index].totalFitness += result.fitness2;
fitnessTrackers[pairing.genome2Index].matchCount++;
}
console.log('[SelfPlay] Ran', pairings.length, 'matches for', genomes.length, 'genomes');
console.log('[SelfPlay] Sample fitness from first genome:', fitnessTrackers[0].totalFitness, '/', fitnessTrackers[0].matchCount);
// Average fitness across matches
for (let i = 0; i < genomes.length; i++) {
const tracker = fitnessTrackers[i];
genomes[i].fitness = tracker.matchCount > 0
? tracker.totalFitness / tracker.matchCount
: 0;
}
return { ...population, genomes };
}
/**
* Generate deterministic match pairings
*/
function generatePairings(
populationSize: number,
K: number,
seed: number
): MatchPairing[] {
const pairings: MatchPairing[] = [];
const rng = new SeededRandom(seed);
for (let i = 0; i < populationSize; i++) {
for (let k = 0; k < K; k++) {
// Pick a random opponent (not self)
let opponentIndex;
do {
opponentIndex = rng.nextInt(0, populationSize);
} while (opponentIndex === i);
// Random spawn pair (0-4)
const spawnPairId = rng.nextInt(0, 5);
// Each match is played twice with swapped sides
pairings.push({
genome1Index: i,
genome2Index: opponentIndex,
spawnPairId,
swapSides: false,
});
pairings.push({
genome1Index: i,
genome2Index: opponentIndex,
spawnPairId,
swapSides: true,
});
}
}
return pairings;
}
/**
* Run a single match between two genomes
*/
function runMatch(
genome1: Genome,
genome2: Genome,
pairing: MatchPairing,
config: MatchConfig
): { fitness1: number; fitness2: number } {
// Swap genomes if needed for side fairness
const g1 = pairing.swapSides ? genome2 : genome1;
const g2 = pairing.swapSides ? genome1 : genome2;
// Create networks
const network1 = createNetwork(g1);
const network2 = createNetwork(g2);
// Create simulation
let sim = createSimulation(config.mapSeed + pairing.spawnPairId, pairing.spawnPairId);
// Create fitness trackers
let tracker1 = createFitnessTracker(0);
let tracker2 = createFitnessTracker(1);
// Run simulation
while (!sim.isOver && sim.tick < config.maxTicks) {
// Get observations
const obs1 = generateObservation(0, sim);
const obs2 = generateObservation(1, sim);
// Get actions from networks
const inputs1 = observationToInputs(obs1);
const inputs2 = observationToInputs(obs2);
const outputs1 = network1.activate(inputs1);
const outputs2 = network2.activate(inputs2);
const action1: AgentAction = {
moveX: outputs1[0],
moveY: outputs1[1],
turn: outputs1[2],
shoot: outputs1[3],
};
const action2: AgentAction = {
moveX: outputs2[0],
moveY: outputs2[1],
turn: outputs2[2],
shoot: outputs2[3],
};
// Step simulation
sim = stepSimulation(sim, [action1, action2]);
// Update fitness
tracker1 = updateFitness(tracker1, sim);
tracker2 = updateFitness(tracker2, sim);
}
// Swap fitness back if sides were swapped
if (pairing.swapSides) {
return {
fitness1: tracker2.fitness,
fitness2: tracker1.fitness,
};
} else {
return {
fitness1: tracker1.fitness,
fitness2: tracker2.fitness,
};
}
}

View File

@@ -0,0 +1,232 @@
import type { Agent, SimulationState, Observation, RayHit, Vec2, Wall } from './types';
import { SIMULATION_CONFIG } from './types';
/**
* Sensor system for NEAT Arena.
*
* Agents perceive the world using 360° raycasting.
* Each ray detects distance and what it hit (nothing, wall, or opponent).
*/
/**
* Generate observation vector for an agent.
*
* Returns a complete observation including:
* - 24 rays (360°) with distance and hit type
* - Agent's velocity
* - Aim direction
* - Fire cooldown
*/
export function generateObservation(agentId: number, state: SimulationState): Observation {
const agent = state.agents.find(a => a.id === agentId)!;
const opponent = state.agents.find(a => a.id !== agentId)!;
const { RAY_COUNT, RAY_RANGE, FIRE_COOLDOWN, AGENT_MAX_SPEED } = SIMULATION_CONFIG;
// Cast rays in 360°
const rays: RayHit[] = [];
const angleStep = (2 * Math.PI) / RAY_COUNT;
for (let i = 0; i < RAY_COUNT; i++) {
const angle = i * angleStep;
const ray = castRay(agent.position, angle, RAY_RANGE, state.map.walls, opponent);
rays.push(ray);
}
// Normalize velocity
const vx = agent.velocity.x / AGENT_MAX_SPEED;
const vy = agent.velocity.y / AGENT_MAX_SPEED;
// Aim direction as sin/cos
const aimSin = Math.sin(agent.aimAngle);
const aimCos = Math.cos(agent.aimAngle);
// Normalize cooldown
const cooldown = agent.fireCooldown / FIRE_COOLDOWN;
return {
rays,
vx,
vy,
aimSin,
aimCos,
cooldown,
};
}
/**
* Cast a single ray from origin in a direction, up to maxDist.
*
* Returns the closest hit: either wall, opponent, or nothing.
*/
function castRay(
origin: Vec2,
angle: number,
maxDist: number,
walls: Wall[],
opponent: Agent
): RayHit {
const dir: Vec2 = {
x: Math.cos(angle),
y: Math.sin(angle),
};
const rayEnd: Vec2 = {
x: origin.x + dir.x * maxDist,
y: origin.y + dir.y * maxDist,
};
let closestDist = maxDist;
let hitType: 'nothing' | 'wall' | 'opponent' = 'nothing';
// Check wall intersections
for (const wall of walls) {
const dist = rayAABBIntersection(origin, rayEnd, wall.rect);
if (dist !== null && dist < closestDist) {
closestDist = dist;
hitType = 'wall';
}
}
// Check opponent intersection (treat as circle)
const opponentDist = rayCircleIntersection(origin, dir, maxDist, opponent.position, opponent.radius);
if (opponentDist !== null && opponentDist < closestDist) {
closestDist = opponentDist;
hitType = 'opponent';
}
return {
distance: closestDist / maxDist, // Normalize to [0, 1]
hitType,
};
}
/**
* Ray-AABB intersection.
* Returns distance to intersection, or null if no hit.
*/
function rayAABBIntersection(
origin: Vec2,
end: Vec2,
aabb: { minX: number; minY: number; maxX: number; maxY: number }
): number | null {
const dir: Vec2 = {
x: end.x - origin.x,
y: end.y - origin.y,
};
const len = Math.sqrt(dir.x * dir.x + dir.y * dir.y);
if (len === 0) return null;
dir.x /= len;
dir.y /= len;
// Slab method
const invDirX = dir.x === 0 ? Infinity : 1 / dir.x;
const invDirY = dir.y === 0 ? Infinity : 1 / dir.y;
const tx1 = (aabb.minX - origin.x) * invDirX;
const tx2 = (aabb.maxX - origin.x) * invDirX;
const ty1 = (aabb.minY - origin.y) * invDirY;
const ty2 = (aabb.maxY - origin.y) * invDirY;
const tmin = Math.max(Math.min(tx1, tx2), Math.min(ty1, ty2));
const tmax = Math.min(Math.max(tx1, tx2), Math.max(ty1, ty2));
if (tmax < 0 || tmin > tmax || tmin > len) return null;
return tmin >= 0 ? tmin : tmax;
}
/**
* Ray-circle intersection.
* Returns distance to intersection, or null if no hit.
*/
function rayCircleIntersection(
origin: Vec2,
dir: Vec2,
maxDist: number,
circleCenter: Vec2,
circleRadius: number
): number | null {
// Vector from ray origin to circle center
const oc: Vec2 = {
x: origin.x - circleCenter.x,
y: origin.y - circleCenter.y,
};
const a = dir.x * dir.x + dir.y * dir.y;
const b = 2 * (oc.x * dir.x + oc.y * dir.y);
const c = oc.x * oc.x + oc.y * oc.y - circleRadius * circleRadius;
const discriminant = b * b - 4 * a * c;
if (discriminant < 0) return null;
const sqrtDisc = Math.sqrt(discriminant);
const t1 = (-b - sqrtDisc) / (2 * a);
const t2 = (-b + sqrtDisc) / (2 * a);
// Return closest positive intersection within range
if (t1 >= 0 && t1 <= maxDist) return t1;
if (t2 >= 0 && t2 <= maxDist) return t2;
return null;
}
/**
* Convert observation to flat array of floats for neural network input.
*
* Total: 24 rays × 2 + 5 extra = 53 inputs
*/
export function observationToInputs(obs: Observation): number[] {
const inputs: number[] = [];
// Rays: distance + hitType as scalar
for (const ray of obs.rays) {
inputs.push(ray.distance);
// Encode hitType as scalar
let hitTypeScalar = 0;
if (ray.hitType === 'wall') hitTypeScalar = 0.5;
else if (ray.hitType === 'opponent') hitTypeScalar = 1.0;
inputs.push(hitTypeScalar);
}
// Extra inputs
inputs.push(obs.vx);
inputs.push(obs.vy);
inputs.push(obs.aimSin);
inputs.push(obs.aimCos);
inputs.push(obs.cooldown);
return inputs;
}
/**
* Check if agent has clear line-of-sight to opponent.
* Used for fitness calculation.
*/
export function hasLineOfSight(agent: Agent, opponent: Agent, walls: Wall[]): boolean {
const dir: Vec2 = {
x: opponent.position.x - agent.position.x,
y: opponent.position.y - agent.position.y,
};
const dist = Math.sqrt(dir.x * dir.x + dir.y * dir.y);
if (dist === 0) return true;
dir.x /= dist;
dir.y /= dist;
// Check if any wall blocks the line
for (const wall of walls) {
const hitDist = rayAABBIntersection(agent.position, opponent.position, wall.rect);
if (hitDist !== null && hitDist < dist) {
return false;
}
}
return true;
}

View File

@@ -0,0 +1,286 @@
import type {
SimulationState,
Agent,
Bullet,
AgentAction,
Vec2,
Wall,
MatchResult,
} from './types';
import { SIMULATION_CONFIG } from './types';
import { generateArenaMap } from './mapGenerator';
/**
* Core simulation engine for the NEAT Arena.
*
* Deterministic, operates at fixed 30Hz timestep.
* Handles agent movement, bullet physics, collisions, respawning, and scoring.
*/
let nextBulletId = 0;
/**
* Create a new simulation instance
*/
export function createSimulation(mapSeed: number, spawnPairId: number): SimulationState {
const map = generateArenaMap(mapSeed);
// Get spawn points for the selected pair
const spawns = map.spawnPoints.filter(sp => sp.pairId === spawnPairId);
const spawn0 = spawns.find(sp => sp.side === 0)!.position;
const spawn1 = spawns.find(sp => sp.side === 1)!.position;
const agents: [Agent, Agent] = [
createAgent(0, spawn0),
createAgent(1, spawn1),
];
return {
tick: 0,
agents,
bullets: [],
map,
isOver: false,
};
}
/**
* Create a new agent
*/
function createAgent(id: number, spawnPoint: Vec2): Agent {
return {
id,
position: { x: spawnPoint.x, y: spawnPoint.y },
velocity: { x: 0, y: 0 },
aimAngle: id === 0 ? 0 : Math.PI, // Face each other initially
radius: SIMULATION_CONFIG.AGENT_RADIUS,
invulnTicks: SIMULATION_CONFIG.RESPAWN_INVULN_TICKS,
fireCooldown: 0,
hits: 0,
kills: 0,
spawnPoint,
};
}
/**
* Step the simulation forward by one tick
*/
export function stepSimulation(
state: SimulationState,
actions: [AgentAction, AgentAction]
): SimulationState {
if (state.isOver) return state;
const newState = { ...state };
newState.tick++;
// Update agents
newState.agents = [
updateAgent(state.agents[0], actions[0], state),
updateAgent(state.agents[1], actions[1], state),
];
// Update bullets
newState.bullets = state.bullets
.map(b => updateBullet(b, state))
.filter(b => b !== null) as Bullet[];
// Check bullet-agent collisions
checkCollisions(newState);
// Check episode termination
if (newState.tick >= SIMULATION_CONFIG.MAX_TICKS) {
newState.isOver = true;
newState.result = createMatchResult(newState);
} else if (newState.agents[0].kills >= SIMULATION_CONFIG.KILLS_TO_WIN ||
newState.agents[1].kills >= SIMULATION_CONFIG.KILLS_TO_WIN) {
newState.isOver = true;
newState.result = createMatchResult(newState);
}
return newState;
}
/**
* Update a single agent
*/
function updateAgent(agent: Agent, action: AgentAction, state: SimulationState): Agent {
const { DT, AGENT_MAX_SPEED, AGENT_TURN_RATE, FIRE_COOLDOWN, BULLET_SPAWN_OFFSET, BULLET_SPEED } = SIMULATION_CONFIG;
const newAgent = { ...agent };
// Decrease timers
if (newAgent.invulnTicks > 0) newAgent.invulnTicks--;
if (newAgent.fireCooldown > 0) newAgent.fireCooldown--;
// Update aim angle
const turnAmount = action.turn * AGENT_TURN_RATE * DT;
newAgent.aimAngle += turnAmount;
// Normalize angle to [-π, π]
newAgent.aimAngle = ((newAgent.aimAngle + Math.PI) % (2 * Math.PI)) - Math.PI;
// Update velocity
const moveLength = Math.sqrt(action.moveX * action.moveX + action.moveY * action.moveY);
if (moveLength > 0) {
newAgent.velocity.x = (action.moveX / moveLength) * AGENT_MAX_SPEED;
newAgent.velocity.y = (action.moveY / moveLength) * AGENT_MAX_SPEED;
} else {
newAgent.velocity.x = 0;
newAgent.velocity.y = 0;
}
// Update position
let newX = newAgent.position.x + newAgent.velocity.x * DT;
let newY = newAgent.position.y + newAgent.velocity.y * DT;
// Check wall collisions and clamp position
const testPos = { x: newX, y: newY };
if (isAgentCollidingWithWalls(testPos, newAgent.radius, state.map.walls)) {
// Simple response: stop movement
newX = newAgent.position.x;
newY = newAgent.position.y;
newAgent.velocity.x = 0;
newAgent.velocity.y = 0;
}
newAgent.position.x = newX;
newAgent.position.y = newY;
// Fire bullet
if (action.shoot > 0.5 && newAgent.fireCooldown === 0) {
newAgent.fireCooldown = FIRE_COOLDOWN;
// Spawn bullet in front of agent
const bulletPos: Vec2 = {
x: newAgent.position.x + Math.cos(newAgent.aimAngle) * BULLET_SPAWN_OFFSET,
y: newAgent.position.y + Math.sin(newAgent.aimAngle) * BULLET_SPAWN_OFFSET,
};
const bullet: Bullet = {
id: nextBulletId++,
position: bulletPos,
velocity: {
x: Math.cos(newAgent.aimAngle) * BULLET_SPEED,
y: Math.sin(newAgent.aimAngle) * BULLET_SPEED,
},
ownerId: newAgent.id,
ttl: SIMULATION_CONFIG.BULLET_TTL,
};
state.bullets.push(bullet);
}
return newAgent;
}
/**
* Update a bullet
*/
function updateBullet(bullet: Bullet, state: SimulationState): Bullet | null {
const { DT } = SIMULATION_CONFIG;
const newBullet = { ...bullet };
newBullet.ttl--;
if (newBullet.ttl <= 0) return null;
// Update position
newBullet.position.x += newBullet.velocity.x * DT;
newBullet.position.y += newBullet.velocity.y * DT;
// Check wall collision
if (isBulletCollidingWithWalls(newBullet.position, state.map.walls)) {
return null; // Bullet destroyed
}
return newBullet;
}
/**
* Check for bullet-agent collisions and handle hits
*/
function checkCollisions(state: SimulationState): void {
const bulletsToRemove = new Set<number>();
for (const bullet of state.bullets) {
for (const agent of state.agents) {
// Can't hit yourself or invulnerable agents
if (bullet.ownerId === agent.id || agent.invulnTicks > 0) continue;
const dx = bullet.position.x - agent.position.x;
const dy = bullet.position.y - agent.position.y;
const distSq = dx * dx + dy * dy;
if (distSq < agent.radius * agent.radius) {
// Hit!
bulletsToRemove.add(bullet.id);
// Update scores
agent.hits++;
const shooter = state.agents.find(a => a.id === bullet.ownerId);
if (shooter) shooter.kills++;
// Respawn agent
agent.position.x = agent.spawnPoint.x;
agent.position.y = agent.spawnPoint.y;
agent.velocity.x = 0;
agent.velocity.y = 0;
agent.invulnTicks = SIMULATION_CONFIG.RESPAWN_INVULN_TICKS;
}
}
}
// Remove bullets
state.bullets = state.bullets.filter(b => !bulletsToRemove.has(b.id));
}
/**
* Check if an agent collides with any walls
*/
function isAgentCollidingWithWalls(pos: Vec2, radius: number, walls: Wall[]): boolean {
for (const wall of walls) {
// AABB vs circle collision
const closestX = Math.max(wall.rect.minX, Math.min(pos.x, wall.rect.maxX));
const closestY = Math.max(wall.rect.minY, Math.min(pos.y, wall.rect.maxY));
const dx = pos.x - closestX;
const dy = pos.y - closestY;
const distSq = dx * dx + dy * dy;
if (distSq < radius * radius) {
return true;
}
}
return false;
}
/**
* Check if a bullet collides with any walls
*/
function isBulletCollidingWithWalls(pos: Vec2, walls: Wall[]): boolean {
for (const wall of walls) {
if (pos.x >= wall.rect.minX && pos.x <= wall.rect.maxX &&
pos.y >= wall.rect.minY && pos.y <= wall.rect.maxY) {
return true;
}
}
return false;
}
/**
* Create match result
*/
function createMatchResult(state: SimulationState): MatchResult {
const [a0, a1] = state.agents;
let winnerId = -1;
if (a0.kills > a1.kills) winnerId = 0;
else if (a1.kills > a0.kills) winnerId = 1;
return {
winnerId,
scores: [a0.kills, a1.kills],
ticks: state.tick,
};
}

View File

@@ -0,0 +1,202 @@
import type { Genome } from './genome';
/**
* NEAT Speciation
*
* Groups genomes into species based on compatibility distance.
* Implements dynamic threshold adjustment to target 6-10 species.
*/
export interface Species {
id: number;
representative: Genome;
members: Genome[];
averageFitness: number;
staleness: number; // Generations without improvement
}
/**
* Compatibility distance coefficients
*/
export interface CompatibilityConfig {
excessCoeff: number; // c1
disjointCoeff: number; // c2
weightDiffCoeff: number; // c3
}
export const DEFAULT_COMPATIBILITY_CONFIG: CompatibilityConfig = {
excessCoeff: 1.0,
disjointCoeff: 1.0,
weightDiffCoeff: 0.4,
};
/**
* Calculate compatibility distance between two genomes
* δ = c1*E/N + c2*D/N + c3*W
*/
export function compatibilityDistance(
genome1: Genome,
genome2: Genome,
config: CompatibilityConfig = DEFAULT_COMPATIBILITY_CONFIG
): number {
const innovations1 = new Set(genome1.connections.map(c => c.innovation));
const innovations2 = new Set(genome2.connections.map(c => c.innovation));
const max1 = Math.max(...Array.from(innovations1), 0);
const max2 = Math.max(...Array.from(innovations2), 0);
const maxInnovation = Math.max(max1, max2);
let matching = 0;
let disjoint = 0;
let excess = 0;
let weightDiff = 0;
const conn1Map = new Map(genome1.connections.map(c => [c.innovation, c]));
const conn2Map = new Map(genome2.connections.map(c => [c.innovation, c]));
// Count matching, disjoint, excess
const allInnovations = new Set([...innovations1, ...innovations2]);
for (const innovation of allInnovations) {
const c1 = conn1Map.get(innovation);
const c2 = conn2Map.get(innovation);
if (c1 && c2) {
// Matching gene
matching++;
weightDiff += Math.abs(c1.weight - c2.weight);
} else {
// Disjoint or excess
// Excess genes are those with innovation > OTHER genome's max
const isInGenome1 = innovations1.has(innovation);
const isInGenome2 = innovations2.has(innovation);
if (isInGenome1 && innovation > max2) {
excess++;
} else if (isInGenome2 && innovation > max1) {
excess++;
} else {
disjoint++;
}
}
}
// Normalize by number of genes in larger genome
const N = Math.max(genome1.connections.length, genome2.connections.length, 1);
// Average weight difference for matching genes
const avgWeightDiff = matching > 0 ? weightDiff / matching : 0;
const delta =
(config.excessCoeff * excess) / N +
(config.disjointCoeff * disjoint) / N +
config.weightDiffCoeff * avgWeightDiff;
return delta;
}
/**
* Assign genomes to species
*/
export function speciate(
genomes: Genome[],
previousSpecies: Species[],
compatibilityThreshold: number,
config: CompatibilityConfig = DEFAULT_COMPATIBILITY_CONFIG
): Species[] {
const newSpecies: Species[] = [];
let nextSpeciesId = previousSpecies.length > 0
? Math.max(...previousSpecies.map(s => s.id)) + 1
: 0;
// Update representatives from previous generation
for (const species of previousSpecies) {
if (species.members.length > 0) {
// Pick a random member as the new representative
species.representative = species.members[Math.floor(Math.random() * species.members.length)];
species.members = [];
}
}
// Assign each genome to a species
for (const genome of genomes) {
let foundSpecies = false;
// Try to match with existing species
for (const species of previousSpecies) {
const distance = compatibilityDistance(genome, species.representative, config);
if (distance < compatibilityThreshold) {
species.members.push(genome);
foundSpecies = true;
break;
}
}
// If no match, create new species
if (!foundSpecies) {
const newSpec: Species = {
id: nextSpeciesId++,
representative: genome,
members: [genome],
averageFitness: 0,
staleness: 0,
};
previousSpecies.push(newSpec);
}
}
// Keep only species with members
for (const species of previousSpecies) {
if (species.members.length > 0) {
// Calculate average fitness
const totalFitness = species.members.reduce((sum, g) => sum + g.fitness, 0);
species.averageFitness = totalFitness / species.members.length;
newSpecies.push(species);
}
}
console.log(`[Speciation] Threshold: ${compatibilityThreshold.toFixed(2)}, Species formed: ${newSpecies.length}`);
if (newSpecies.length > 0) {
console.log(`[Speciation] Species sizes:`, newSpecies.map(s => s.members.length));
}
return newSpecies;
}
/**
* Adjust compatibility threshold to target a certain number of species
*/
export function adjustCompatibilityThreshold(
currentThreshold: number,
currentSpeciesCount: number,
targetMin: number = 6,
targetMax: number = 10
): number {
const adjustmentRate = 0.1;
if (currentSpeciesCount < targetMin) {
// Too few species, make threshold more lenient
return currentThreshold + adjustmentRate;
} else if (currentSpeciesCount > targetMax) {
// Too many species, make threshold stricter
return Math.max(0.1, currentThreshold - adjustmentRate);
}
return currentThreshold;
}
/**
* Apply fitness sharing within species
*/
export function applyFitnessSharing(species: Species[]): void {
for (const spec of species) {
const speciesSize = spec.members.length;
for (const genome of spec.members) {
// Adjusted fitness = raw fitness / species size
genome.fitness = genome.fitness / speciesSize;
}
}
}

View File

@@ -0,0 +1,129 @@
import type { Population } from './evolution';
import type { EvolutionConfig } from './evolution';
import { evaluatePopulation, DEFAULT_MATCH_CONFIG } from './selfPlay';
import { evolveGeneration, createPopulation, getPopulationStats } from './evolution';
/**
* NEAT Training Worker
*
* Runs training in a background thread to prevent UI blocking.
* The main thread only handles visualization and UI updates.
*/
export interface TrainingWorkerMessage {
type: 'start' | 'pause' | 'step' | 'reset' | 'init';
config?: EvolutionConfig;
}
export interface TrainingWorkerResponse {
type: 'update' | 'error' | 'ready';
population?: Population;
stats?: ReturnType<typeof getPopulationStats>;
error?: string;
}
let population: Population | null = null;
let isRunning = false;
let config: EvolutionConfig | null = null;
/**
* Handle messages from main thread
*/
self.onmessage = async (e: MessageEvent<TrainingWorkerMessage>) => {
const message = e.data;
try {
switch (message.type) {
case 'init':
if (message.config) {
config = message.config;
population = createPopulation(config);
sendUpdate();
self.postMessage({ type: 'ready' } as TrainingWorkerResponse);
}
break;
case 'start':
isRunning = true;
runTrainingLoop();
break;
case 'pause':
isRunning = false;
break;
case 'step':
if (population && config) {
const stats = await runSingleGeneration();
sendUpdate(stats);
}
break;
case 'reset':
if (config) {
population = createPopulation(config);
isRunning = false;
sendUpdate();
}
break;
}
} catch (error) {
self.postMessage({
type: 'error',
error: error instanceof Error ? error.message : 'Unknown error',
} as TrainingWorkerResponse);
}
};
/**
* Run continuous training loop
*/
async function runTrainingLoop() {
while (isRunning && population && config) {
const stats = await runSingleGeneration();
sendUpdate(stats);
// Yield to allow pause/stop messages to be processed
await new Promise(resolve => setTimeout(resolve, 0));
}
}
/**
* Run a single generation
*/
async function runSingleGeneration(): Promise<ReturnType<typeof getPopulationStats> | null> {
if (!population || !config) return null;
console.log('[Worker] Starting generation', population.generation);
// Evaluate population
const evaluatedPop = evaluatePopulation(population, DEFAULT_MATCH_CONFIG);
// Check fitness after evaluation
const fitnesses = evaluatedPop.genomes.map(g => g.fitness);
const avgFit = fitnesses.reduce((a, b) => a + b, 0) / fitnesses.length;
const maxFit = Math.max(...fitnesses);
console.log('[Worker] After evaluation - Avg fitness:', avgFit.toFixed(2), 'Max:', maxFit.toFixed(2));
// Evolve to next generation
population = evolveGeneration(evaluatedPop, config);
console.log('[Worker] Generation', population.generation, 'complete');
// IMPORTANT: Send stats from the EVALUATED population, not the evolved one
// (evolved population has fitness reset to 0)
return getPopulationStats(evaluatedPop);
}
/**
* Send population update to main thread
*/
function sendUpdate(stats?: ReturnType<typeof getPopulationStats> | null) {
if (!population) return;
self.postMessage({
type: 'update',
population,
stats: stats || undefined,
} as TrainingWorkerResponse);
}

204
src/lib/neatArena/types.ts Normal file
View File

@@ -0,0 +1,204 @@
/**
* Core types for the NEAT Arena simulation.
*
* The simulation is deterministic and operates at a fixed 30Hz timestep.
* All units are in a 512×512 logic space.
*/
// ============================================================================
// WORLD & MAP
// ============================================================================
export interface Vec2 {
x: number;
y: number;
}
export interface AABB {
minX: number;
minY: number;
maxX: number;
maxY: number;
}
export interface Wall {
rect: AABB;
}
export interface SpawnPoint {
position: Vec2;
/** Which spawn pair this belongs to (0-4) */
pairId: number;
/** Which side of the pair (0 or 1) */
side: 0 | 1;
}
export interface ArenaMap {
/** Rectangular walls */
walls: Wall[];
/** Symmetric spawn point pairs (always 5 pairs = 10 total spawn points) */
spawnPoints: SpawnPoint[];
/** Map generation seed */
seed: number;
}
// ============================================================================
// AGENT
// ============================================================================
export interface Agent {
id: number;
position: Vec2;
velocity: Vec2;
/** Current aim direction in radians */
aimAngle: number;
/** Radius for collision */
radius: number;
/** Invulnerability ticks remaining after respawn */
invulnTicks: number;
/** Cooldown ticks until can fire again */
fireCooldown: number;
/** Number of times hit this episode */
hits: number;
/** Number of times this agent landed a hit */
kills: number;
/** Assigned spawn point */
spawnPoint: Vec2;
}
// ============================================================================
// BULLET
// ============================================================================
export interface Bullet {
id: number;
position: Vec2;
velocity: Vec2;
/** Which agent fired this bullet */
ownerId: number;
/** Ticks until bullet auto-expires */
ttl: number;
}
// ============================================================================
// SIMULATION STATE
// ============================================================================
export interface SimulationState {
/** Current tick (increments at 30Hz) */
tick: number;
/** Agents in the arena (always 2) */
agents: [Agent, Agent];
/** Active bullets */
bullets: Bullet[];
/** The arena map */
map: ArenaMap;
/** Episode over? */
isOver: boolean;
/** Match result after episode ends */
result?: MatchResult;
}
export interface MatchResult {
/** Winner agent ID, or -1 for draw */
winnerId: number;
/** Final scores */
scores: [number, number];
/** Total ticks */
ticks: number;
}
// ============================================================================
// ACTIONS
// ============================================================================
export interface AgentAction {
/** Movement vector (will be normalized) */
moveX: number;
moveY: number;
/** Turn rate [-1..1] (scaled by max turn rate) */
turn: number;
/** Fire bullet if > 0.5 */
shoot: number;
}
// ============================================================================
// OBSERVATIONS / SENSORS
// ============================================================================
export interface RayHit {
/** Distance [0..1] normalized by max range */
distance: number;
/** What the ray hit */
hitType: 'nothing' | 'wall' | 'opponent';
}
export interface Observation {
/** 24 rays × 2 values (distance, hitType) */
rays: RayHit[];
/** Agent's own velocity */
vx: number;
vy: number;
/** Aim direction as unit vector */
aimSin: number;
aimCos: number;
/** Fire cooldown [0..1] */
cooldown: number;
}
// ============================================================================
// SIMULATION CONFIG
// ============================================================================
export const SIMULATION_CONFIG = {
/** Logic world size */
WORLD_SIZE: 512,
/** Fixed timestep (30Hz) */
TICK_RATE: 30,
DT: 1 / 30,
/** Episode termination */
MAX_TICKS: 600, // 20 seconds
KILLS_TO_WIN: 5,
/** Agent physics */
AGENT_RADIUS: 8,
AGENT_MAX_SPEED: 120, // units/sec
AGENT_TURN_RATE: 270 * (Math.PI / 180), // rad/sec
/** Respawn */
RESPAWN_INVULN_TICKS: 15, // 0.5 seconds
/** Bullet physics */
BULLET_SPEED: 260, // units/sec
BULLET_TTL: 60, // 2 seconds
FIRE_COOLDOWN: 10, // ~0.33 seconds
BULLET_SPAWN_OFFSET: 12, // spawn in front of agent
/** Sensors */
RAY_COUNT: 24,
RAY_RANGE: 220,
} as const;
// Re-export Genome type from genome module for convenience
export type { Genome } from './genome';

View File

@@ -0,0 +1,42 @@
/**
* Deterministic random number generator using a linear congruential generator (LCG).
*
* Ensures reproducible results for the same seed.
*/
export class SeededRandom {
private seed: number;
constructor(seed: number) {
this.seed = seed % 2147483647;
if (this.seed <= 0) this.seed += 2147483646;
}
/**
* Returns a float in [0, 1)
*/
next(): number {
this.seed = (this.seed * 16807) % 2147483647;
return (this.seed - 1) / 2147483646;
}
/**
* Returns an integer in [min, max) (max exclusive)
*/
nextInt(min: number, max: number): number {
return Math.floor(this.next() * (max - min)) + min;
}
/**
* Returns a float in [min, max)
*/
nextFloat(min: number, max: number): number {
return this.next() * (max - min) + min;
}
/**
* Returns a random boolean
*/
nextBool(): boolean {
return this.next() < 0.5;
}
}

View File

@@ -60,19 +60,31 @@ export function evaluatePopulation(
} }
// Update best ever // Update best ever
return updateBestStats(
{
...population,
individuals: evaluatedIndividuals
}
);
}
export function updateBestStats(population: Population): Population {
let newBestEver = population.bestFitnessEver; let newBestEver = population.bestFitnessEver;
let newBestNetwork = population.bestNetworkEver; let newBestNetwork = population.bestNetworkEver;
let changed = false;
for (const individual of evaluatedIndividuals) { for (const individual of population.individuals) {
if (individual.fitness > newBestEver) { if (individual.fitness > newBestEver) {
newBestEver = individual.fitness; newBestEver = individual.fitness;
newBestNetwork = cloneNetwork(individual.network); newBestNetwork = cloneNetwork(individual.network);
changed = true;
} }
} }
if (!changed) return population;
return { return {
...population, ...population,
individuals: evaluatedIndividuals,
bestFitnessEver: newBestEver, bestFitnessEver: newBestEver,
bestNetworkEver: newBestNetwork, bestNetworkEver: newBestNetwork,
}; };
@@ -152,28 +164,26 @@ function selectParent(sorted: Individual[]): Individual {
return best; return best;
} }
function crossover(parent1: Network, parent2: Network): Network { function crossover(parent1: Network, parent2: Network): Network {
const child = cloneNetwork(parent1); const child = cloneNetwork(parent1);
child.id = Math.random().toString(36).substring(2, 15) + Math.random().toString(36).substring(2, 15); child.id = Math.random().toString(36).substring(2, 15) + Math.random().toString(36).substring(2, 15);
// Single-point crossover on weights and biases // Single-point crossover on weights and biases?
// For flat arrays, we can just iterate linear index.
const crossoverRate = 0.5; const crossoverRate = 0.5;
// Crossover input-hidden weights // Crossover input-hidden weights
for (let i = 0; i < child.weightsIH.length; i++) { for (let i = 0; i < child.weightsIH.length; i++) {
for (let j = 0; j < child.weightsIH[i].length; j++) { if (Math.random() < crossoverRate) {
if (Math.random() < crossoverRate) { child.weightsIH[i] = parent2.weightsIH[i];
child.weightsIH[i][j] = parent2.weightsIH[i][j];
}
} }
} }
// Crossover hidden-output weights // Crossover hidden-output weights
for (let i = 0; i < child.weightsHO.length; i++) { for (let i = 0; i < child.weightsHO.length; i++) {
for (let j = 0; j < child.weightsHO[i].length; j++) { if (Math.random() < crossoverRate) {
if (Math.random() < crossoverRate) { child.weightsHO[i] = parent2.weightsHO[i];
child.weightsHO[i][j] = parent2.weightsHO[i][j];
}
} }
} }
@@ -199,22 +209,18 @@ function mutate(network: Network, mutationRate: number): Network {
// Mutate input-hidden weights // Mutate input-hidden weights
for (let i = 0; i < mutated.weightsIH.length; i++) { for (let i = 0; i < mutated.weightsIH.length; i++) {
for (let j = 0; j < mutated.weightsIH[i].length; j++) { if (Math.random() < mutationRate) {
if (Math.random() < mutationRate) { mutated.weightsIH[i] += (Math.random() * 2 - 1) * 0.5;
mutated.weightsIH[i][j] += (Math.random() * 2 - 1) * 0.5;
// Clamp to reasonable range // Clamp to reasonable range
mutated.weightsIH[i][j] = Math.max(-2, Math.min(2, mutated.weightsIH[i][j])); mutated.weightsIH[i] = Math.max(-2, Math.min(2, mutated.weightsIH[i]));
}
} }
} }
// Mutate hidden-output weights // Mutate hidden-output weights
for (let i = 0; i < mutated.weightsHO.length; i++) { for (let i = 0; i < mutated.weightsHO.length; i++) {
for (let j = 0; j < mutated.weightsHO[i].length; j++) { if (Math.random() < mutationRate) {
if (Math.random() < mutationRate) { mutated.weightsHO[i] += (Math.random() * 2 - 1) * 0.5;
mutated.weightsHO[i][j] += (Math.random() * 2 - 1) * 0.5; mutated.weightsHO[i] = Math.max(-2, Math.min(2, mutated.weightsHO[i]));
mutated.weightsHO[i][j] = Math.max(-2, Math.min(2, mutated.weightsHO[i][j]));
}
} }
} }

View File

@@ -1,24 +1,53 @@
import { evaluatePopulation, evolveGeneration, type Population } from './evolution'; import { evaluatePopulation, evolveGeneration, type Population, type Individual } from './evolution';
import type { EvolutionConfig } from './types'; import type { EvolutionConfig } from './types';
self.onmessage = (e: MessageEvent) => { self.onmessage = (e: MessageEvent) => {
const { population, config, generations = 1 } = e.data as { const data = e.data;
population: Population;
config: EvolutionConfig;
generations?: number;
};
try { try {
let currentPop = population; if (data.type === 'EVALUATE_ONLY') {
// Worker Pool Mode: Just evaluate the given individuals
const { individuals, config } = data.payload as {
individuals: Individual[];
config: EvolutionConfig;
};
// Reconstruct a partial population object just for evaluation
// evaluatePopulation expects a Population, but only uses .individuals
// actually it returns a Population.
// Let's modify `evaluatePopulation`?
// Better: Mock the population shell.
const mockPop: Population = {
individuals,
generation: 0,
bestFitnessEver: 0,
bestNetworkEver: null
};
const evaluatedPop = evaluatePopulation(mockPop, config);
self.postMessage({
type: 'EVAL_RESULT',
payload: evaluatedPop.individuals
});
for (let i = 0; i < generations; i++) { } else {
// Run the heavy computation // Default Mode: Run full generations (Legacy / Single Worker)
const evaluated = evaluatePopulation(currentPop, config); const { population, config, generations = 1 } = data as {
currentPop = evolveGeneration(evaluated, config); population: Population;
config: EvolutionConfig;
generations?: number;
};
let currentPop = population;
for (let i = 0; i < generations; i++) {
const evaluated = evaluatePopulation(currentPop, config);
currentPop = evolveGeneration(evaluated, config);
}
self.postMessage({ type: 'SUCCESS', payload: currentPop });
} }
// Send back the result
self.postMessage({ type: 'SUCCESS', payload: currentPop });
} catch (error) { } catch (error) {
self.postMessage({ type: 'ERROR', payload: error }); self.postMessage({ type: 'ERROR', payload: error });
} }

View File

@@ -0,0 +1,102 @@
import { describe, expect, test } from "bun:test";
import { calculateArea, createGame, isDanger, type GameState } from "./game";
import { Direction, type Position } from "./types";
// Helper to access the unexported calculateArea function?
// Since it's not exported, I might need to export it for testing or rely on testing getInputs.
// Let's modify game.ts to export calculateArea for testing purposes.
// For now, I'll assume I can export it.
// Mock Game State Helper
function createMockGame(gridSize: number, snake: Position[]): GameState {
return {
gridSize,
snake,
food: { x: 0, y: 0 }, // Irrelevant for area test
direction: Direction.RIGHT,
alive: true,
score: 0,
steps: 0,
stepsSinceLastFood: 0
};
}
describe("Snake AI Logic", () => {
describe("isDanger", () => {
const game = createMockGame(10, [{ x: 5, y: 5 }]);
test("detects wall collisions", () => {
expect(isDanger(game, -1, 5)).toBe(true);
expect(isDanger(game, 10, 5)).toBe(true);
expect(isDanger(game, 5, -1)).toBe(true);
expect(isDanger(game, 5, 10)).toBe(true);
});
test("detects safe spots", () => {
expect(isDanger(game, 0, 0)).toBe(false);
expect(isDanger(game, 9, 9)).toBe(false);
});
test("detects body collisions", () => {
const complexGame = createMockGame(10, [{x:5,y:5}, {x:5,y:6}, {x:6,y:6}]);
expect(isDanger(complexGame, 5, 6)).toBe(true); // Hit body
expect(isDanger(complexGame, 6, 6)).toBe(true); // Hit tail
expect(isDanger(complexGame, 5, 4)).toBe(false); // Safe spot
});
});
describe("calculateArea", () => {
test("calculates area in empty grid", () => {
// Grid 5x5 = 25 cells. Snake head at 2,2 occupies 1.
// Start flood fill from 2,3 (Down). Should reach all 24 empty cells.
const game = createMockGame(5, [{ x: 2, y: 2 }]);
const area = calculateArea(game, { x: 2, y: 3 });
expect(area).toBe(24);
});
test("calculates confined area", () => {
// Snake creates a wall splitting the board
// 5x5 Grid.
// Snake: (2,0), (2,1), (2,2), (2,3), (2,4) - Vertical line down middle
const snake = [
{x: 2, y: 0}, {x: 2, y: 1}, {x: 2, y: 2}, {x: 2, y: 3}, {x: 2, y: 4}
];
const game = createMockGame(5, snake);
// Left side (0,0) -> 2 cols x 5 rows = 10 cells
expect(calculateArea(game, { x: 0, y: 0 })).toBe(10);
// Right side (4,0) -> 2 cols x 5 rows = 10 cells
expect(calculateArea(game, { x: 4, y: 0 })).toBe(10);
// Check wall itself returns 0
expect(calculateArea(game, { x: 2, y: 0 })).toBe(0);
});
test("calculates U-shape trap", () => {
// U-shape wrapping around a center point
// Snake at (1,1), (1,2), (2,2), (2,1) ?? No simpler.
// Snake: (1,0), (1,1), (2,1), (3,1), (3,0)
// Trap at (2,0).
// Bound by Wall(Top) and Snake(L, D, R).
// 5x5 Grid.
// S S . . .
// S S S . .
// . . . . .
// . . . . .
// . . . . .
// Snake: (1,0), (1,1), (2,1), (3,1), (3,0)
const snake = [
{x:1, y:0}, {x:1, y:1}, {x:2, y:1}, {x:3, y:1}, {x:3, y:0}
];
const game = createMockGame(5, snake);
// Point (2,0) is inside the U cup.
// It is bounded by (1,0)L, (3,0)R, (2,1)D, Wall(Top).
// Area should be 1.
expect(calculateArea(game, { x: 2, y: 0 })).toBe(1);
});
});
});

View File

@@ -131,58 +131,108 @@ function spawnFood(gridSize: number, snake: Position[]): Position {
return food; return food;
} }
// Shared buffers for optimization
let cachedObstacles: Int8Array | null = null; // 0 = empty, 1 = obstacle
let cachedVisited: Int8Array | null = null; // 0 = unvisited, 1 = visited
let cachedStack: Int32Array | null = null;
let cachedSize = 0;
function ensureBuffers(size: number) {
const totalCells = size * size;
if (!cachedObstacles || cachedSize !== size) {
cachedObstacles = new Int8Array(totalCells);
cachedVisited = new Int8Array(totalCells); // Changed back to Int8 for speed
cachedStack = new Int32Array(totalCells);
cachedSize = size;
}
}
export function getInputs(state: GameState): number[] { export function getInputs(state: GameState): number[] {
const head = state.snake[0]; const head = state.snake[0];
const food = state.food; const food = state.food;
const size = state.gridSize;
// Calculate relative direction vectors based on current direction
// If facing UP (0): Front=(0, -1), Left=(-1, 0), Right=(1, 0)
// If facing RIGHT (1): Front=(1, 0), Left=(0, -1), Right=(0, 1)
// ...and so on
const frontVec = getDirectionVector(state.direction); // Ensure buffers are ready
ensureBuffers(size);
const obstacles = cachedObstacles!;
// Reset obstacles (fastest way is fill(0))
obstacles.fill(0);
// Mark snake on obstacle grid (O(N))
// This replaces the O(N) check in isDanger called multiple times
const snake = state.snake;
for (let i = 0; i < snake.length; i++) {
const s = snake[i];
if (s.x >= 0 && s.x < size && s.y >= 0 && s.y < size) {
obstacles[s.y * size + s.x] = 1;
}
}
// Directions relative to Head
const leftVec = getDirectionVector(((state.direction + 3) % 4) as Direction); const leftVec = getDirectionVector(((state.direction + 3) % 4) as Direction);
const frontVec = getDirectionVector(state.direction);
const rightVec = getDirectionVector(((state.direction + 1) % 4) as Direction); const rightVec = getDirectionVector(((state.direction + 1) % 4) as Direction);
// 1. Danger Sensors (Relative) const visionInputs: number[] = [];
// Is there danger immediately to my Left, Front, or Right? const dirs = [leftVec, frontVec, rightVec];
const dangerLeft = isDanger(state, head.x + leftVec.x, head.y + leftVec.y);
const dangerFront = isDanger(state, head.x + frontVec.x, head.y + frontVec.y); // Total grid area for normalization
const dangerRight = isDanger(state, head.x + rightVec.x, head.y + rightVec.y); const totalArea = state.gridSize * state.gridSize;
// 2. Food Direction (Relative) for (const dir of dirs) {
// We want to know if food is to our Left/Right or In Front/Behind relative to head // 1. Immediate Danger
// We can use dot products or simple coordinate checks const immX = head.x + dir.x;
const immY = head.y + dir.y;
// Fast danger check using grid
let immediateDanger = false;
if (immX < 0 || immX >= size || immY < 0 || immY >= size) {
immediateDanger = true;
} else if (obstacles[immY * size + immX] === 1) {
immediateDanger = true;
}
visionInputs.push(immediateDanger ? 1 : 0);
// 2. Available Area (Flood Fill)
let area = 0;
if (!immediateDanger) {
area = calculateAreaOptimized(size, obstacles, { x: immX, y: immY });
}
visionInputs.push(area / totalArea);
}
// Food Sensors (4 inputs)
const relFoodX = food.x - head.x; const relFoodX = food.x - head.x;
const relFoodY = food.y - head.y; const relFoodY = food.y - head.y;
// Dot product to project food vector onto our relative axes
const foodFront = relFoodX * frontVec.x + relFoodY * frontVec.y; const foodFront = relFoodX * frontVec.x + relFoodY * frontVec.y;
const foodSide = relFoodX * rightVec.x + relFoodY * rightVec.y; const foodSide = relFoodX * rightVec.x + relFoodY * rightVec.y;
// foodSide: Positive = Right, Negative = Left
// Self Awareness (1 input)
const normLength = state.snake.length / totalArea;
return [ return [
// Sensor 1: Danger Left ...visionInputs, // 6 inputs (3 * 2)
dangerLeft ? 1 : 0,
// Sensor 2: Danger Front
dangerFront ? 1 : 0,
// Sensor 3: Danger Right
dangerRight ? 1 : 0,
// Sensor 4: Food is to the Left
foodSide < 0 ? 1 : 0,
// Sensor 5: Food is to the Right
foodSide > 0 ? 1 : 0,
// Sensor 6: Food is Ahead
foodFront > 0 ? 1 : 0,
// Sensor 7: Food is Behind
foodFront < 0 ? 1 : 0,
// Sensor 8: Normalized Length (Growth Sensor) // Food (4 inputs)
state.snake.length / (state.gridSize * state.gridSize) foodSide < 0 ? 1 : 0, // Left
foodSide > 0 ? 1 : 0, // Right
foodFront > 0 ? 1 : 0, // Front
foodFront < 0 ? 1 : 0, // Back
// Length (1 input)
normLength
]; ];
} }
export function isDanger(state: GameState, x: number, y: number): boolean {
if (x < 0 || x >= state.gridSize || y < 0 || y >= state.gridSize) return true;
return state.snake.some(s => s.x === x && s.y === y);
}
function getDirectionVector(dir: Direction): Position { function getDirectionVector(dir: Direction): Position {
switch (dir) { switch (dir) {
case Direction.UP: return { x: 0, y: -1 }; case Direction.UP: return { x: 0, y: -1 };
@@ -193,15 +243,96 @@ function getDirectionVector(dir: Direction): Position {
} }
} }
function isDanger(state: GameState, x: number, y: number): boolean { // Optimized, internal version calling shared buffers
// Check wall function calculateAreaOptimized(size: number, obstacles: Int8Array, start: Position): number {
if (x < 0 || x >= state.gridSize || y < 0 || y >= state.gridSize) { const stack = cachedStack!;
return true; const visited = cachedVisited!;
}
// Check self-collision // Reset visited for this run
return state.snake.some((seg) => seg.x === x && seg.y === y); visited.fill(0);
const startIndex = start.y * size + start.x;
// Safety check (already done in getInputs, but acceptable)
if (obstacles[startIndex] === 1) return 0;
let head = 0;
let tail = 0;
stack[tail++] = startIndex;
visited[startIndex] = 1; // Mark visited
let area = 0;
while (head < tail) {
const currIndex = stack[head++];
area++;
const cx = currIndex % size;
const cy = (currIndex / size) | 0;
// Neighbors (Up, Down, Left, Right)
// Up
if (cy > 0) {
const upIndex = currIndex - size;
// Check obstacle AND if already visited
if (obstacles[upIndex] === 0 && visited[upIndex] === 0) {
visited[upIndex] = 1;
stack[tail++] = upIndex;
}
}
// Down
if (cy < size - 1) {
const downIndex = currIndex + size;
if (obstacles[downIndex] === 0 && visited[downIndex] === 0) {
visited[downIndex] = 1;
stack[tail++] = downIndex;
}
}
// Left
if (cx > 0) {
const leftIndex = currIndex - 1;
if (obstacles[leftIndex] === 0 && visited[leftIndex] === 0) {
visited[leftIndex] = 1;
stack[tail++] = leftIndex;
}
}
// Right
if (cx < size - 1) {
const rightIndex = currIndex + 1;
if (obstacles[rightIndex] === 0 && visited[rightIndex] === 0) {
visited[rightIndex] = 1;
stack[tail++] = rightIndex;
}
}
}
return area;
} }
/**
* @deprecated Use calculateAreaOptimized internally. Kept for backward compatibility/tests.
*/
export function calculateArea(state: GameState, start: Position): number {
ensureBuffers(state.gridSize);
const obstacles = cachedObstacles!;
obstacles.fill(0);
for (const s of state.snake) {
if (s.x >= 0 && s.x < state.gridSize && s.y >= 0 && s.y < state.gridSize) {
obstacles[s.y * state.gridSize + s.x] = 1;
}
}
return calculateAreaOptimized(state.gridSize, obstacles, start);
}
export function calculateFitness(state: GameState): number { export function calculateFitness(state: GameState): number {
// Fitness formula balancing food collection and survival // Fitness formula balancing food collection and survival
const foodScore = state.score * 100; const foodScore = state.score * 100;

View File

@@ -5,15 +5,16 @@ export interface Network {
inputSize: number; inputSize: number;
hiddenSize: number; hiddenSize: number;
outputSize: number; outputSize: number;
weightsIH: number[][]; // Input to Hidden weights // Flat buffers for better cache locality and performance
weightsHO: number[][]; // Hidden to Output weights weightsIH: Float32Array; // Input -> Hidden weights
biasH: number[]; // Hidden layer biases weightsHO: Float32Array; // Hidden -> Output weights
biasO: number[]; // Output layer biases biasH: Float32Array; // Hidden layer biases
biasO: Float32Array; // Output layer biases
} }
export function createNetwork( export function createNetwork(
inputSize: number = 8, inputSize: number = 11,
hiddenSize: number = 18, hiddenSize: number = 24,
outputSize: number = 3 outputSize: number = 3
): Network { ): Network {
return { return {
@@ -21,8 +22,8 @@ export function createNetwork(
inputSize, inputSize,
hiddenSize, hiddenSize,
outputSize, outputSize,
weightsIH: createRandomMatrix(inputSize, hiddenSize), weightsIH: createRandomArray(inputSize * hiddenSize),
weightsHO: createRandomMatrix(hiddenSize, outputSize), weightsHO: createRandomArray(hiddenSize * outputSize),
biasH: createRandomArray(hiddenSize), biasH: createRandomArray(hiddenSize),
biasO: createRandomArray(outputSize), biasO: createRandomArray(outputSize),
}; };
@@ -32,53 +33,104 @@ function generateId(): string {
return Math.random().toString(36).substring(2, 15) + Math.random().toString(36).substring(2, 15); return Math.random().toString(36).substring(2, 15) + Math.random().toString(36).substring(2, 15);
} }
function createRandomMatrix(rows: number, cols: number): number[][] { function createRandomArray(size: number): Float32Array {
const matrix: number[][] = []; const array = new Float32Array(size);
for (let i = 0; i < rows; i++) {
matrix[i] = [];
for (let j = 0; j < cols; j++) {
matrix[i][j] = Math.random() * 2 - 1; // Random between -1 and 1
}
}
return matrix;
}
function createRandomArray(size: number): number[] {
const array: number[] = [];
for (let i = 0; i < size; i++) { for (let i = 0; i < size; i++) {
array[i] = Math.random() * 2 - 1; array[i] = Math.random() * 2 - 1; // Random between -1 and 1
} }
return array; return array;
} }
export function forward(network: Network, inputs: number[]): number[] { // Pre-allocated buffers for inference to avoid garbage collection
// Hidden layer activation // Note: This makes 'forward' not thread-safe if called concurrently on the SAME thread.
const hidden: number[] = []; // Since JS is single-threaded, this is safe unless we use async/await inside (which we don't).
for (let h = 0; h < network.hiddenSize; h++) { // However, distinct workers have their own memory, so it's safe for workers too.
let sum = network.biasH[h]; let cachedHidden: Float32Array | null = null;
for (let i = 0; i < network.inputSize; i++) { let cachedOutputs: Float32Array | null = null;
sum += inputs[i] * network.weightsIH[i][h]; let maxHiddenSize = 0;
} let maxOutputSize = 0;
// ReLU activation for hidden layer: f(x) = max(0, x)
// Faster and solves vanishing gradient better than tanh
hidden[h] = Math.max(0, sum);
}
// Output layer activation function ensureBuffers(hiddenSize: number, outputSize: number) {
const outputs: number[] = []; if (!cachedHidden || hiddenSize > maxHiddenSize) {
for (let o = 0; o < network.outputSize; o++) { cachedHidden = new Float32Array(hiddenSize);
let sum = network.biasO[o]; maxHiddenSize = hiddenSize;
for (let h = 0; h < network.hiddenSize; h++) { }
sum += hidden[h] * network.weightsHO[h][o]; if (!cachedOutputs || outputSize > maxOutputSize) {
cachedOutputs = new Float32Array(outputSize);
maxOutputSize = outputSize;
} }
outputs[o] = tanh(sum);
}
return outputs;
} }
function tanh(x: number): number { export function forward(network: Network, inputs: number[]): Float32Array {
return Math.tanh(x); const { inputSize, hiddenSize, outputSize, weightsIH, weightsHO, biasH, biasO } = network;
ensureBuffers(hiddenSize, outputSize);
const hidden = cachedHidden!;
const outputs = cachedOutputs!;
// 1. Hidden Layer
// hidden[h] = ReLU(bias[h] + sum(inputs[i] * weights[i][h]))
// Flattened weightsIH is [Input 0 -> Hidden 0..H, Input 1 -> Hidden 0..H]
// Wait, standard matrix mult is usually [Row][Col].
// Let's assume weightsIH is stored as rows=Input, cols=Hidden.
// Index = i * hiddenSize + h
// Optimization: Loop order.
// Iterating h then i means jumping around in inputs array? No, inputs is small.
// Jumping around in weights array is bad.
// If weights are stored [i * hiddenSize + h], then iterating i then h is sequential?
// No, h varies in inner loop.
// We want to iterate weights sequentially.
// Initialize hidden with bias
hidden.set(biasH);
// Accumulate inputs
// weightsIH is laid out: [i=0, h=0], [i=0, h=1]...
// So we should iterate i as outer, h as inner?
// biasH is [h=0, h=1...]
let wIdx = 0;
for (let i = 0; i < inputSize; i++) {
const inputVal = inputs[i];
if (inputVal !== 0) { // Sparse input optimization
for (let h = 0; h < hiddenSize; h++) {
hidden[h] += inputVal * weightsIH[wIdx++];
}
} else {
wIdx += hiddenSize; // Skip weights for zero input
}
}
// ReLU Activation
for (let h = 0; h < hiddenSize; h++) {
if (hidden[h] < 0) hidden[h] = 0;
}
// 2. Output Layer
// outputs[o] = tanh(bias[o] + sum(hidden[h] * weights[h][o]))
// Initialize with bias
outputs.set(biasO);
wIdx = 0;
for (let h = 0; h < hiddenSize; h++) {
const hiddenVal = hidden[h];
if (hiddenVal !== 0) {
for (let o = 0; o < outputSize; o++) {
outputs[o] += hiddenVal * weightsHO[wIdx++];
}
} else {
wIdx += outputSize;
}
}
// Tanh Activation
for (let o = 0; o < outputSize; o++) {
outputs[o] = Math.tanh(outputs[o]);
}
return outputs;
} }
export function getAction(network: Network, inputs: number[]): Action { export function getAction(network: Network, inputs: number[]): Action {
@@ -86,22 +138,23 @@ export function getAction(network: Network, inputs: number[]): Action {
// Find index of maximum output // Find index of maximum output
let maxIndex = 0; let maxIndex = 0;
for (let i = 1; i < outputs.length; i++) { let maxVal = outputs[0];
if (outputs[i] > outputs[maxIndex]) {
maxIndex = i; // Unrolled loop for small output size (3)
} if (outputs[1] > maxVal) {
maxVal = outputs[1];
maxIndex = 1;
}
if (outputs[2] > maxVal) {
maxIndex = 2;
} }
// Map output index to action // Map output index to action
switch (maxIndex) { switch (maxIndex) {
case 0: case 0: return Action.TURN_LEFT;
return Action.TURN_LEFT; case 1: return Action.STRAIGHT;
case 1: case 2: return Action.TURN_RIGHT;
return Action.STRAIGHT; default: return Action.STRAIGHT;
case 2:
return Action.TURN_RIGHT;
default:
return Action.STRAIGHT;
} }
} }
@@ -111,9 +164,10 @@ export function cloneNetwork(network: Network): Network {
inputSize: network.inputSize, inputSize: network.inputSize,
hiddenSize: network.hiddenSize, hiddenSize: network.hiddenSize,
outputSize: network.outputSize, outputSize: network.outputSize,
weightsIH: network.weightsIH.map((row) => [...row]), // Float32Array has a fast .slice() method to copy
weightsHO: network.weightsHO.map((row) => [...row]), weightsIH: network.weightsIH.slice(),
biasH: [...network.biasH], weightsHO: network.weightsHO.slice(),
biasO: [...network.biasO], biasH: network.biasH.slice(),
biasO: network.biasO.slice(),
}; };
} }

View File

@@ -0,0 +1,70 @@
import EvolutionWorker from './evolution.worker?worker';
import type { Population, Individual } from './evolution';
import type { EvolutionConfig } from './types';
export class WorkerPool {
private workers: Worker[] = [];
private poolSize: number;
constructor(size: number = navigator.hardwareConcurrency || 4) {
this.poolSize = size;
for (let i = 0; i < size; i++) {
this.workers.push(new EvolutionWorker());
}
}
terminate() {
this.workers.forEach(w => w.terminate());
this.workers = [];
}
async evaluateParallel(population: Population, config: EvolutionConfig): Promise<Population> {
// Split individuals into chunks
const chunkSize = Math.ceil(population.individuals.length / this.poolSize);
const chunks: Individual[][] = [];
for (let i = 0; i < population.individuals.length; i += chunkSize) {
chunks.push(population.individuals.slice(i, i + chunkSize));
}
// Dispatch chunks to workers
const promises = chunks.map((chunk, index) => {
return new Promise<Individual[]>((resolve, reject) => {
const worker = this.workers[index];
// One-time listener for this request
const handler = (e: MessageEvent) => {
if (e.data.type === 'EVAL_RESULT') {
worker.removeEventListener('message', handler);
resolve(e.data.payload);
} else if (e.data.type === 'ERROR') {
worker.removeEventListener('message', handler);
reject(e.data.payload);
}
};
worker.addEventListener('message', handler);
worker.postMessage({
type: 'EVALUATE_ONLY',
payload: {
individuals: chunk,
config
}
});
});
});
// Wait for all chunks
const results = await Promise.all(promises);
// Merge results
const mergedIndividuals = results.flat();
// Reconstruct population with evaluated individuals
return {
...population,
individuals: mergedIndividuals
};
}
}